A244012
Numerators of rational approximations to sqrt(7) obtained from Newton's method.
Original entry on oeis.org
2, 11, 233, 108497, 23543191457, 1108563727961872518977, 2457827077905448997994482872789298261401217, 12081827889770476116093110581355561229584727594431650162181251776430351279198649072897
Offset: 0
2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
-
N:=7;
s:=[floor(sqrt(N))];
M:=8;
for n from 1 to M do
x:=s[n];
h:=(N-x^2)/(2*x);
s:=[op(s),x+h]; od:
lprint(s);
s1:=map(numer,s);
s2:=map(denom,s);
A244013
Denominators of rational approximations to sqrt(7) obtained from Newton's method.
Original entry on oeis.org
1, 4, 88, 41008, 8898489952, 418997705236253480128, 928971316248341903257187589777603944778112, 4566501711345281867283814391125123371716411674583075407993026856131137508750543524608
Offset: 0
2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
-
N:=7;
s:=[floor(sqrt(N))];
M:=8;
for n from 1 to M do
x:=s[n];
h:=(N-x^2)/(2*x);
s:=[op(s),x+h]; od:
lprint(s);
s1:=map(numer,s);
s2:=map(denom,s);
A244014
Numerators of rational approximations to sqrt(6) obtained from Newton's method.
Original entry on oeis.org
2, 5, 49, 4801, 46099201, 4250272665676801, 36129635465198759610694779187201, 2610701117696295981568349760414651575095962187244375364404428801
Offset: 0
2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
-
N:=6;
s:=[floor(sqrt(N))];
M:=8;
for n from 1 to M do
x:=s[n];
h:=(N-x^2)/(2*x);
s:=[op(s),x+h]; od:
lprint(s);
s1:=map(numer,s);
s2:=map(denom,s);
A244015
Denominators of rational approximations to sqrt(6) obtained from Newton's method.
Original entry on oeis.org
1, 2, 20, 1960, 18819920, 1735166549767840, 14749861913749949808286047759680, 1065814268211609269094400465471990022332221793124358274759711360
Offset: 0
2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
-
m:=9; f:=[n eq 1 select 2 else (Self(n-1)+6/Self(n-1))/2: n in [1..m]]; [Denominator(f[n]): n in [1..m]]; // Vincenzo Librandi, Jan 12 2016
-
N:=6;
s:=[floor(sqrt(N))];
M:=8;
for n from 1 to M do
x:=s[n];
h:=(N-x^2)/(2*x);
s:=[op(s),x+h]; od:
lprint(s);
s1:=map(numer,s);
s2:=map(denom,s);
A177879
The smallest odd prime factor of the Lucas-Lehmer number A003010(n).
Original entry on oeis.org
7, 97, 31, 708158977, 127, 22783, 113210499946729046527, 12289, 1049179854847, 22427452848394140276947044397991663611794141183, 8191, 29687809
Offset: 1
A003010(3)=37634 and its smallest odd prime factor is 31.
A094680
a(n+1) = 4*a(n)^3 - 3*a(n), with a(0) = 2.
Original entry on oeis.org
2, 26, 70226, 1385331749802026, 10634604778476758291777057017318241822792488226
Offset: 0
A382437
a(n) = a(n-1)^2 + 4 * a(n-1), with a(0) = 2.
Original entry on oeis.org
2, 12, 192, 37632, 1416317952, 2005956546822746112, 4023861667741036022825635656102100992, 16191462721115671781777559070120513664958590125499158514329308740975788032
Offset: 0
-
NestList[#*(4 + #) &, 2, 8] (* Paolo Xausa, Apr 01 2025 *)
-
a(n)=if(n, a(n-1)^2 + 4*a(n-1), 2);
vector(8, i, a(i-1))
A213680
a(n) = 2*a(n-1)^2/3-3 with a(0)=6.
Original entry on oeis.org
6, 21, 291, 56451, 2124476931, 3008934820234119171, 6035792501611554034238453484153151491, 24287194081673507672666338605180770497437885188248737771493963111463682051
Offset: 0
a(1) = 2*a(0)^2/3-3 = 2*6^2/3-3 = 21,
a(2) = 2*a(1)^2/3-3 = 2*21^2/3-3 = 291,
a(3) = 2*a(2)^2/3-3 = 2*291^2/3-3 = 2*84681/3-3 = 56451.
Or, by the first formula:
a(3) = 3*cosh(2^3*arccosh(2)) = 56451,
a(4) = 3*cosh(2^4*arccosh(2)) = 2124476931.
A242232
a(n) = 2*a(n-1)^2 - 1, a(0)=6.
Original entry on oeis.org
6, 71, 10081, 203253121, 82623662392481281, 13653339174293451118767199870801921, 372827341216592355174245573447441869623455324379507680549087234580481
Offset: 0
-
RecurrenceTable[{a[n+1]==2*a[n]^2-1,a[0]==6},a,{n,0,10}]
NestList[2#^2-1&,6,10] (* Harvey P. Dale, Jun 12 2025 *)
A261532
Hall's sequence g_n.
Original entry on oeis.org
7, 589, 11064985, 7835767761026353, 7859104819806710982081319640824417, 15811975313589523224392147529414564125936123169432771986649715567359169
Offset: 3
-
[n le 1 select 7 else 2*(Self(n-1)-1)*(1+2^(n+1)*(Self(n-1)-1)) + 1: n in [1..6]]; // Vincenzo Librandi, Aug 24 2015
-
N=11; g=vector(N); g[3] = 7;
for (n=3, N-1, g[n+1] = 2*(g[n]-1)*(1+2^n*(g[n]-1))+1 );
vector(N-3, j, g[j+2])
Comments