cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A244012 Numerators of rational approximations to sqrt(7) obtained from Newton's method.

Original entry on oeis.org

2, 11, 233, 108497, 23543191457, 1108563727961872518977, 2457827077905448997994482872789298261401217, 12081827889770476116093110581355561229584727594431650162181251776430351279198649072897
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
		

Crossrefs

Cf. A244013 (denominators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=7;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244013 Denominators of rational approximations to sqrt(7) obtained from Newton's method.

Original entry on oeis.org

1, 4, 88, 41008, 8898489952, 418997705236253480128, 928971316248341903257187589777603944778112, 4566501711345281867283814391125123371716411674583075407993026856131137508750543524608
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
		

Crossrefs

Cf. A244012 (numerators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=7;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244014 Numerators of rational approximations to sqrt(6) obtained from Newton's method.

Original entry on oeis.org

2, 5, 49, 4801, 46099201, 4250272665676801, 36129635465198759610694779187201, 2610701117696295981568349760414651575095962187244375364404428801
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
		

Crossrefs

The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Maple
    N:=6;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A244015 Denominators of rational approximations to sqrt(6) obtained from Newton's method.

Original entry on oeis.org

1, 2, 20, 1960, 18819920, 1735166549767840, 14749861913749949808286047759680, 1065814268211609269094400465471990022332221793124358274759711360
Offset: 0

Views

Author

N. J. A. Sloane, Jun 18 2014

Keywords

Examples

			2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
		

Crossrefs

Cf. A244014 (numerators).
The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.

Programs

  • Magma
    m:=9; f:=[n eq 1 select 2 else (Self(n-1)+6/Self(n-1))/2: n in [1..m]]; [Denominator(f[n]): n in [1..m]]; // Vincenzo Librandi, Jan 12 2016
  • Maple
    N:=6;
    s:=[floor(sqrt(N))];
    M:=8;
    for n from 1 to M do
    x:=s[n];
    h:=(N-x^2)/(2*x);
    s:=[op(s),x+h]; od:
    lprint(s);
    s1:=map(numer,s);
    s2:=map(denom,s);

A177879 The smallest odd prime factor of the Lucas-Lehmer number A003010(n).

Original entry on oeis.org

7, 97, 31, 708158977, 127, 22783, 113210499946729046527, 12289, 1049179854847, 22427452848394140276947044397991663611794141183, 8191, 29687809
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 13 2010

Keywords

Comments

Does this sequence include all of the Mersenne primes greater than 3?
a(8)=12289; a(11)=8191, a(15)=131071.
Also the least prime factor of A002812(n). - Michel Marcus, Dec 16 2022
a(p-2) = 2^p-1 for all odd Mersenne exponents p in A000043? - Thomas Ordowski, Aug 12 2018

Examples

			A003010(3)=37634 and its smallest odd prime factor is 31.
		

Crossrefs

Extensions

More terms, using factordb, from Michel Marcus and Hugo Pfoertner, Dec 16 2022

A094680 a(n+1) = 4*a(n)^3 - 3*a(n), with a(0) = 2.

Original entry on oeis.org

2, 26, 70226, 1385331749802026, 10634604778476758291777057017318241822792488226
Offset: 0

Views

Author

Jose Eduardo Blazek, Jun 07 2004

Keywords

Comments

Smallest positive integer x satisfying the Pell equation x^2 - 3^(2*n-3) * y^2 = 1. - A.H.M. Smeets, Sep 29 2017
Term a(5) has 139 decimal digits and a(6) has 417 decimal digits. - Andrew Howroyd, Feb 25 2018

Crossrefs

Programs

  • Mathematica
    NestList[4 #^3 - 3 # &, 2, 5] (* Michael De Vlieger, Oct 02 2017 *)
  • PARI
    a(n) = if (n==0, 2, 4*a(n-1)^3 - 3*a(n-1)); \\ Michel Marcus, Oct 03 2017
    
  • PARI
    a(n) = polchebyshev(3^n, 1, 2); \\ Michel Marcus, Oct 03 2017

Formula

a(n) = cosh(3^n*arccosh(2)).
a(n) = ChebyshevT(3^n, 2). - Vladeta Jovovic, Jun 11 2004
From A.H.M. Smeets, Oct 02 2017: (Start)
a(n) = A001075(3^(n-2))
a(n) = A002350(3^(2n-3)). (End)

Extensions

More terms from Vladeta Jovovic, Jun 11 2004
Offset corrected by Michel Marcus, Oct 03 2017

A382437 a(n) = a(n-1)^2 + 4 * a(n-1), with a(0) = 2.

Original entry on oeis.org

2, 12, 192, 37632, 1416317952, 2005956546822746112, 4023861667741036022825635656102100992, 16191462721115671781777559070120513664958590125499158514329308740975788032
Offset: 0

Views

Author

V. Barbera, Mar 25 2025

Keywords

Crossrefs

Programs

  • Mathematica
    NestList[#*(4 + #) &, 2, 8] (* Paolo Xausa, Apr 01 2025 *)
  • PARI
    a(n)=if(n, a(n-1)^2 + 4*a(n-1), 2);
    vector(8, i, a(i-1))

Formula

a(n) = A003010(n) - 2.
a(n)/2 = A002812(n) - 1.
For n > 1: a(n) = 3 * 2^(2*n) * Product_{i = 0..n-2} A002812(i)^2.
Conjecture: a(n) = Sum_{k=1..2^n} (2^n * 2^k * binomial(2^n + k - 1, 2*k - 1) / k).

A213680 a(n) = 2*a(n-1)^2/3-3 with a(0)=6.

Original entry on oeis.org

6, 21, 291, 56451, 2124476931, 3008934820234119171, 6035792501611554034238453484153151491, 24287194081673507672666338605180770497437885188248737771493963111463682051
Offset: 0

Views

Author

Jose Eduardo Blazek, Mar 04 2013

Keywords

Examples

			a(1) = 2*a(0)^2/3-3 = 2*6^2/3-3 = 21,
a(2) = 2*a(1)^2/3-3 = 2*21^2/3-3 = 291,
a(3) = 2*a(2)^2/3-3 = 2*291^2/3-3 = 2*84681/3-3 = 56451.
Or, by the first formula:
a(3) = 3*cosh(2^3*arccosh(2)) = 56451,
a(4) = 3*cosh(2^4*arccosh(2)) = 2124476931.
		

Crossrefs

Cf. A002812.

Programs

  • Sage
    var('x')
    p=2*x^2/3-3
    s=[6]
    for i in [0..8]:
        s=s+[p(s[i])]
    show(s)

Formula

a(n) = 3*cosh(2^n*arccosh(2)).
a(n) = 3*A002812(n). [Giovanni Resta, Mar 04 2013]

A242232 a(n) = 2*a(n-1)^2 - 1, a(0)=6.

Original entry on oeis.org

6, 71, 10081, 203253121, 82623662392481281, 13653339174293451118767199870801921, 372827341216592355174245573447441869623455324379507680549087234580481
Offset: 0

Views

Author

Vaclav Kotesovec, May 08 2014

Keywords

Comments

In general, for a(0)=p is a(n) = cosh(2^n*arccosh(p)) = (1/2)*(p+sqrt(p^2-1))^(2^n) + (1/2)*(p+sqrt(p^2-1))^(-2^n).

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n+1]==2*a[n]^2-1,a[0]==6},a,{n,0,10}]
    NestList[2#^2-1&,6,10] (* Harvey P. Dale, Jun 12 2025 *)

Formula

a(n) = (1/2)*(6+sqrt(35))^(2^n) + (1/2)*(6+sqrt(35))^(-2^n).
a(n) = A023038(2^n).
a(n) = T(2^n,6), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Mar 30 2022

A261532 Hall's sequence g_n.

Original entry on oeis.org

7, 589, 11064985, 7835767761026353, 7859104819806710982081319640824417, 15811975313589523224392147529414564125936123169432771986649715567359169
Offset: 3

Views

Author

Joerg Arndt, Aug 24 2015

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 7 else 2*(Self(n-1)-1)*(1+2^(n+1)*(Self(n-1)-1)) + 1: n in [1..6]]; // Vincenzo Librandi, Aug 24 2015
  • PARI
    N=11;  g=vector(N);  g[3] = 7;
    for (n=3, N-1, g[n+1] = 2*(g[n]-1)*(1+2^n*(g[n]-1))+1 );
    vector(N-3, j, g[j+2])
    

Formula

a(n) = g(n) where g(3) = 7 and g(n+1) = 2*(g(n)-1)*(1+2^n*(g(n)-1)) + 1.
Previous Showing 11-20 of 20 results.