cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 69 results. Next

A321791 Table read by descending antidiagonals: T(n,k) is the number of unoriented cycles (bracelets) of length n using up to k available colors.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 6, 1, 0, 1, 6, 15, 20, 21, 8, 1, 0, 1, 7, 21, 35, 55, 39, 13, 1, 0, 1, 8, 28, 56, 120, 136, 92, 18, 1, 0, 1, 9, 36, 84, 231, 377, 430, 198, 30, 1, 0
Offset: 0

Views

Author

Robert A. Russell, Dec 18 2018

Keywords

Examples

			Table begins with T(0,0):
  1 1  1    1     1      1       1        1        1         1         1 ...
  0 1  2    3     4      5       6        7        8         9        10 ...
  0 1  3    6    10     15      21       28       36        45        55 ...
  0 1  4   10    20     35      56       84      120       165       220 ...
  0 1  6   21    55    120     231      406      666      1035      1540 ...
  0 1  8   39   136    377     888     1855     3536      6273     10504 ...
  0 1 13   92   430   1505    4291    10528    23052     46185     86185 ...
  0 1 18  198  1300   5895   20646    60028   151848    344925    719290 ...
  0 1 30  498  4435  25395  107331   365260  1058058   2707245   6278140 ...
  0 1 46 1219 15084 110085  563786  2250311  7472984  21552969  55605670 ...
  0 1 78 3210 53764 493131 3037314 14158228 53762472 174489813 500280022 ...
For T(3,3)=10, the unoriented cycles are 9 achiral (AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, CCC) and 1 chiral pair (ABC-ACB).
		

Crossrefs

Cf. A075195 (oriented), A293496(chiral), A284855 (achiral).
Cf. A051137 (ascending antidiagonals).
Columns 0-6 are A000007, A000012, A000029, A027671, A032275, A032276, and A056341.
Main diagonal gives A081721.

Programs

  • Mathematica
    Table[If[k>0, DivisorSum[k, EulerPhi[#](n-k)^(k/#)&]/(2k) + ((n-k)^Floor[(k+1)/2]+(n-k)^Ceiling[(k+1)/2])/4, 1], {n, 0, 12}, {k, 0, n}] // Flatten

Formula

T(n,k) = [n==0] + [n>0] * (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 4 + (1/(2*n)) * Sum_{d|n} phi(d) * k^(n/d).
T(n,k) = (A075195(n,k) + A284855(n,k)) / 2.
T(n,k) = A075195(n,k) - A293496(n,k) = A293496(n,k) + A284855(n,k).
Linear recurrence for row n: T(n,k) = Sum_{j=0..n} -binomial(j-n-1,j+1) * T(n,k-1-j) for k >= n + 1.
O.g.f. for column k >= 0: Sum_{n>=0} T(n,k)*x^n = 3/4 + (1 + k*x)^2/(4*(1 - k*x^2)) - (1/2) * Sum_{d >= 1} (phi(d)/d) * log(1 - k*x^d). - Petros Hadjicostas, Feb 07 2021

A334358 Irregular triangle read by rows: row n gives scaled coefficients of the chromatic polynomial corresponding to colorings of the n-hypercube graph up to automorphism, highest powers first, 0 <= k <= 2^n.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -2, 3, -2, 0, 1, -12, 72, -256, 579, -812, 644, -216, 0, 1, -32, 496, -4936, 35276, -191840, 820328, -2808636, 7759343, -17276144, 30675244, -42494732, 44214736, -32375904, 14772272, -3125472, 0, 1, -80, 3160, -82080, 1575420, -23805776, 294640000
Offset: 0

Views

Author

Andrew Howroyd, Apr 24 2020

Keywords

Comments

The polynomials are scaled by a factor of n!*2^n to ensure integer coefficients. When evaluated at x = k, they give the number of non-isomorphic k-colorings of the n-hypercube graph under the automorphism group of the graph. The size of the automorphism group is n!*2^n. Colors may not be interchanged.

Examples

			Triangle begins:
  0 | 1, 0;
  1 | 1, -1, 0;
  2 | 1, -2, 3, -2, 0;
  3 | 1, -12, 72, -256, 579, -812, 644, -216, 0;
  ...
The corresponding polynomials are:
  x;
  (x^2 - x)/(1!*2^1);
  (x^4 - 2*x^3 + 3*x^2 - 2*x)/(2!*2^2);
  (x^8 - 12*x^7 + 72*x^6 - 256*x^5 + 579*x^4 - 812*x^3 + 644*x^2 - 216*x)/(3!*2^3);
  ...
The polynomial (x^4 - 2*x^3 + 3*x^2 - 2*x)/(2!*2^2) gives A002817 when evaluated at integer values of x.
		

Crossrefs

A003438 Number of 5 X 5 matrices with nonnegative integer entries and row and column sums equal to n.

Original entry on oeis.org

1, 120, 6210, 153040, 2224955, 22069251, 164176640, 976395820, 4855258305, 20856798285, 79315936751, 272095118010, 854560160105, 2486299719645, 6765755480415, 17356306529251, 42250330784180, 98137852369965
Offset: 0

Views

Author

Keywords

Comments

Number of 5 X 5 stochastic matrices of integers.

References

  • D. M. Jackson and G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4 (1975), 474-477.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, p. 234.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+103x+4306x^2+63110x^3+388615x^4+1115068x^5+ 1575669x^6+1115068x^7+388615x^8+63110x^9+4306x^10+103x^11+x^12)/ (1-x)^17,{x,0,30}],x] (* Harvey P. Dale, Aug 17 2013 *)

Formula

G.f.: (1 + 103*x + 4306*x^2 + 63110*x^3 + 388615*x^4 + 1115068*x^5 + 1575669*x^6 + 1115068*x^7 + 388615*x^8 + 63110*x^9 + 4306*x^10 + 103*x^11 + x^12)/(1-x)^17.
a(n) = Sum_{j=0..6} A005466(j) * binomial(4+j+n, 4+2*j). - Andrew Howroyd, Apr 09 2020

Extensions

More terms from Vladeta Jovovic, Feb 06 2000

A005045 Number of restricted 3 X 3 matrices with row and column sums n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 17, 25, 37, 51, 70, 92, 121, 153, 194, 240, 296, 358, 433, 515, 612, 718, 841, 975, 1129, 1295, 1484, 1688, 1917, 2163, 2438, 2732, 3058, 3406, 3789, 4197, 4644, 5118, 5635, 6183, 6777, 7405, 8084, 8800, 9571, 10383, 11254
Offset: 0

Views

Author

Keywords

Comments

More precisely, consider 3 X 3 matrices with entries chosen from {0, 1, ..., n-1}, in which each row and column sums to n, where n >= 2. Then a(n) is the number of equivalence classes of such matrices under permutions of rows and columns and transpositions.

Examples

			a(2) = 1:
  110
  101
  011
a(3) = 3:
  111 210 210
  111 102 111
  111 021 012
		

References

  • E. J. Morgan, On 3 X 3 matrices with constant row and column sum, Abstract 763-05-13, Notices Amer. Math. Soc., 26 (1979), page A-27.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002817 for another version.

Programs

  • Maple
    A005045:=-z**2*(-z**5+z**6-z**3+z+1)/((z**2+1)*(z**2+z+1)*(z+1)**2*(z-1)**5); # conjectured by Simon Plouffe in his 1992 dissertation; see formula lines here for the proof of correctness
  • Mathematica
    a[n_] := Block[{k = Floor[(n + 2)/3]}, Sum[Sum[Sum[If[m + r == i/2, Floor[(n - 2*i + m + 2)/2], n - 2*i + m + 1], {r, 0, Floor[i/2 - m]}], {m, Max[2*i - n, 0], Floor[i/2]}], {i, 1, n - k}]]; Table[a[n], {n, 0, 46}] (* Peter Pein, May 13 2008 *)
    LinearRecurrence[{2,0,-1,0,-2,2,0,1,0,-2,1},{0,0,1,3,6,10,17,25,37,51,70},50] (* Harvey P. Dale, Nov 15 2018 *)
  • PARI
    A005045(n)={sum( i=1,n-(n+2)\3, sum( m=max(0,2*i-n),i\2, sum( r=0,i\2-m, if( m+r!=i/2, n-2*i+m+1, (n-2*i+m+2)\2))))} \\ M. F. Hasler, Version 1, May 13 2008
    
  • PARI
    A005045(n)={sum( i=1,(2*n)\3, sum( m=max(0,2*i-n),i\2, (n-2*i+m+1)*((i+1)\2-m)+(i%2==0)*(n-2*i+m+2)\2))} \\ M. F. Hasler, Version 2, much faster, May 13 2008
    
  • PARI
    concat(vector(2), Vec(x^2*(1 + x - x^3 - x^5 + x^6) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Apr 22 2017

Formula

Let n = 3k, 3k-1 or 3k-2 according as n == 0, 2 or 1 mod 3, for n >= 3. Then a(n) = Sum_{i=1..n-k} Sum_{m=max(0,2i-n)..floor(i/2)} Sum_{r=0..floor(i/2)-m} c(i,m,r), where c(i,m,r) = n-2i+m+1 when m+r != i/2, or = floor((n-2i+m+2)/2) when m+r = i/2. [Typos corrected by Peter Pein, May 13 2008]
G.f.: -x^2*(-x^5+x^6-x^3+x+1)/((x^2+1)*(x^2+x+1)*(x+1)^2*(x-1)^5). This was conjectured by Simon Plouffe in his 1992 dissertation and is now known to be correct, although it may be that all the details of the proof have not been written down. See the Mathar link for details.

Extensions

Edited by N. J. A. Sloane, May 12 2008, May 13 2008
More terms from Peter Pein, May 13 2008

A095693 Triangle read by rows: T(n,k) is the number of multigraphs without loops on n labeled nodes with k edges and maximum degree 2.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 3, 6, 1, 1, 6, 21, 22, 6, 1, 10, 55, 130, 130, 22, 1, 15, 120, 485, 1005, 822, 130, 1, 21, 231, 1400, 4830, 8547, 6202, 822, 1, 28, 406, 3416, 17465, 52052, 81676, 52552, 6202, 1, 36, 666, 7392, 52101, 230832, 610932, 859932, 499194, 52552
Offset: 0

Views

Author

Nicholas S. Horne (nickhorne(AT)cox.net), Jul 06 2004

Keywords

Comments

Sum of the each row of the triangle corresponds to sequence A000985. The diagonal of the triangular array T(n,1) represents the triangular numbers (A000217). The T(n,2) diagonal represents the doubly triangular numbers (A002817).
Number of symmetric n X n matrices with nonnegative integer entries and all row sums 2 and trace 2*(n-k). - Andrew Howroyd, Nov 07 2019

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,   1;
  1,  3,   6,    1;
  1,  6,  21,   22,    6;
  1, 10,  55,  130,  130,   22;
  1, 15, 120,  485, 1005,  822,  130;
  1, 21, 231, 1400, 4830, 8547, 6202, 822;
  ...
T(3,2)=6 since there are six ways that a multigraph with 3 nodes can be constructed with 2 edges such that no vertex has degree greater than two.
		

References

  • Horne, Nicholas S. "Analysis of Viable Network Configurations from a Combinatorial, Graphical and Algebraic Perspective." Diss. Providence College, 2004.

Crossrefs

Row sums are A000985.
Main diagonal is A002137.
Columns include A000217, A002817.

Programs

  • PARI
    T(n)={my(v=Vec(serlaplace(sqrt(1/(1-x*y) + O(x*x^n))*exp(x + (x^2*y/(1-x*y) - x*y)/2 + x^2*y^2/4 + O(x*x^n))))); vector(#v, i, Vecrev(v[i], i))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Nov 07 2019

Formula

E.g.f.: sqrt(1/(1-x*y)) * exp(x + (x^2*y/(1-x*y) - x*y)/2 + x^2*y^2/4). - Andrew Howroyd, Nov 07 2019

Extensions

Definition clarified and terms a(37) and beyond from Andrew Howroyd, Nov 07 2019

A003439 Number of 6 X 6 stochastic matrices of integers: all rows and columns sum to n.

Original entry on oeis.org

1, 720, 202410, 20933840, 1047649905, 30767936616, 602351808741, 8575979362560, 94459713879600, 842286559093240, 6292583664553881, 40447642842118656, 228438173705550566, 1152877640765297760, 5271278793334883190, 22085628572718605376, 85604721304213863531
Offset: 0

Views

Author

Keywords

References

  • Matthias Beck and Dennis Pixton, The Ehrhart Polynomial of the Birkhoff Polytope, Discrete & Computational Geometry, 30(4)(2003), 623-637.
  • D. M. Jackson and G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4 (1975), 474-477.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=6 of A257493.
Cf. A005467.

Formula

a(n) = Sum_{j=0..10} A005467(j) * binomial(5+j+n, 5+2*j). - Andrew Howroyd, Apr 09 2020

Extensions

More terms from Melissa Erdmann (merdmann(AT)nebrwesleyan.edu), May 07 2009
Offset changed to 0 by Alois P. Heinz, Apr 26 2015
Name clarified by Charles R Greathouse IV, Mar 03 2018

A070333 Expansion of (1 + x)*(1 - x + x^2)/((1 - x)^4*(1 + x + x^2)).

Original entry on oeis.org

1, 3, 6, 12, 21, 33, 50, 72, 99, 133, 174, 222, 279, 345, 420, 506, 603, 711, 832, 966, 1113, 1275, 1452, 1644, 1853, 2079, 2322, 2584, 2865, 3165, 3486, 3828, 4191, 4577, 4986, 5418, 5875, 6357, 6864, 7398, 7959, 8547, 9164, 9810, 10485
Offset: 0

Views

Author

N. J. A. Sloane, May 11 2002

Keywords

Comments

a(n) is the number of 3 X 3 matrices with nonnegative integer entries such that every row sum, column sum and the trace of the matrix is n. - Sharon Sela (sharonsela(AT)hotmail.com), May 20 2002

Crossrefs

Programs

  • Magma
    [Round((2*n+3)*(n^2+3*n+6)/18): n in [0..50]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    A049347 := proc(n) op(1+(n mod 3),[1,-1,0]) ; end proc:
    A070333 := proc(n) 1+7*n/6+n^2/2+n^3/9+2*A049347(n-1)/9 ; end proc: # R. J. Mathar, Dec 03 2010
  • Mathematica
    CoefficientList[ Series[(1 + x^3)/(1 - 3*x + 3*x^2 - 2*x^3 + 3*x^4 - 3*x^5 + x^6), {x, 0, 45}], x]
  • PARI
    Vec((1+x)*(1-x+x^2)/((1-x)^4*(1+x+x^2))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

a(n) = 1 + 7*n/6 + n^2/2 + n^3/9 + 2*A049347(n-1)/9. - R. J. Mathar, Dec 03 2010
From Mircea Merca, Dec 03 2010: (Start)
a(n) = round((2*n + 3)*(n^2 + 3*n + 6)/18).
a(n) = floor((n + 2)*(2*n^2 + 5*n + 11)/18).
a(n) = ceiling((n + 1)*(2*n^2 + 7*n + 14)/18).
a(n) = round((n + 1)*(2*n^2 + 7*n + 14)/18).
a(n) = a(n-3) + n^2 + 2 for n > 2. (End)
E.g.f.: exp(x)*(1 + x*(32 + x*(15 + 2*x))/18) + 4*exp(-x/2)*sin(sqrt(3)*x/2)/(9*sqrt(3)). - Stefano Spezia, Oct 28 2022

A217338 Number of inequivalent ways to color a 4 X 4 checkerboard using at most n colors allowing rotations and reflections.

Original entry on oeis.org

0, 1, 8548, 5398083, 537157696, 19076074375, 352654485156, 4154189102413, 35184646816768, 231628411446741, 1250002537502500, 5743722797690911, 23110548002468928, 83177110918426603, 272244240093265636, 821051189587805625, 2305843285702230016, 6082649491072763593
Offset: 0

Views

Author

Geoffrey Critzer, Oct 01 2012

Keywords

Comments

Cycle index of symmetry group: (s(1)^16 + 2*s(4)^4 + 3*s(2)^8 + 2*s(2)^6*s(1)^4)/8.

Crossrefs

Row n=4 of A343097.

Programs

  • Mathematica
    Table[(n^16+2n^4+3n^8+2n^10)/8, {n,0,20}]
  • PARI
    a(n) = (n^16 + 2*n^4 + 3*n^8 + 2*n^10)/8; \\ Indranil Ghosh, Feb 27 2017
    
  • Python
    def A217338(n): return (n**16 + 2*n**4 + 3*n**8 + 2*n**10)/8 # Indranil Ghosh, Feb 27 2017

Formula

a(n) = (n^16 + 2*n^4 + 3*n^8 + 2*n^10)/8.
G.f.: -x*(x +1)*(x^14 +8530*x^13 +5244373*x^12 +441307760*x^11 +10231414811*x^10 +87532894238*x^9 +313403397135*x^8 +484445834304*x^7 +313403397135*x^6 +87532894238*x^5 +10231414811*x^4 +441307760*x^3 +5244373*x^2 +8530*x +1)/(x -1)^17. [Colin Barker, Oct 04 2012]

A264854 a(n) = n*(n + 1)*(11*n^2 + 11*n - 10)/24.

Original entry on oeis.org

0, 1, 14, 61, 175, 400, 791, 1414, 2346, 3675, 5500, 7931, 11089, 15106, 20125, 26300, 33796, 42789, 53466, 66025, 80675, 97636, 117139, 139426, 164750, 193375, 225576, 261639, 301861, 346550, 396025, 450616, 510664, 576521, 648550, 727125, 812631, 905464, 1006031
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 26 2015

Keywords

Comments

Partial sums of centered 11-gonal (or hendecagonal) pyramidal numbers.

Crossrefs

Cf. A004467.
Cf. similar sequences provided by the partial sums of centered k-gonal pyramidal numbers: A006522 (k=1), A006007 (k=2), A002817 (k=3), A006325 (k=4), A006322 (k=5), A000537 (k=6), A006323 (k=7), A006324 (k=8), A236770 (k=9), A264853 (k=10), this sequence (k=11), A062392 (k=12), A264888 (k=13).

Programs

  • Magma
    [n*(n+1)*(11*n^2+11*n-10)/24: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
    
  • Mathematica
    Table[n (n + 1) (11 n^2 + 11 n - 10)/24, {n, 0, 50}]
  • PARI
    a(n)=n*(n+1)*(11*n^2+11*n-10)/24 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: x*(1 + 9*x + x^2)/(1 - x)^5.
a(n) = Sum_{k = 0..n} A004467(k).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 27 2015

A290945 Triangular Carmichael numbers.

Original entry on oeis.org

561, 8911, 10585, 41041, 115921, 314821, 334153, 6313681, 8134561, 14913991, 32914441, 60957361, 67902031, 135556345, 289766701, 321197185, 329769721, 368113411, 471905281, 765245881, 842202361, 962442001, 1507746241, 2489462641, 2588653081, 3104207821
Offset: 1

Views

Author

Amiram Eldar, Aug 14 2017

Keywords

Comments

Intersection of A000217 and A002997.
The least triangular Carmichael numbers with the number of prime factors = 3, 4, 5, 6, 7, ... are: 561, 41041, 765245881, 321197185, 1583892181303201, ...
The number of terms below 10^k for k = 3, 4, ... are: 1, 2, 4, 7, 9, 13, 22, 32, 53, 77, 137, 211, 358, 545, 879, 1423, ...
Jonathan Vos Post discovered in 2004 that a(21) = 842202361 = A000217(41041) = A002817(286) is also a doubly triangular Carmichael number. The next number with this property is a(1108) = 292800629576356021 = A000217(765245881) = A002817(39121) (41041 and 765245881 are triangular Carmichael numbers that are also indices of triangular numbers that are also Carmichael numbers).

Examples

			8911 = A000217(133) = A002997(7) therefore 8911 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    seqQ[n_]:=IntegerQ[Sqrt[8n+1]] && !PrimeQ[n] && (Mod[n, CarmichaelLambda[n]] == 1); Select[Range[10^6], seqQ]
Previous Showing 41-50 of 69 results. Next