cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 94 results. Next

A176114 Numbers n such that 30*n-1, 30*n+1 are twin primes.

Original entry on oeis.org

1, 2, 5, 6, 8, 9, 14, 19, 20, 22, 27, 34, 35, 41, 43, 44, 54, 65, 71, 77, 78, 85, 91, 93, 99, 100, 104, 110, 111, 112, 113, 118, 131, 134, 135, 141, 142, 155, 160, 167, 170, 176, 184, 188, 195, 196, 203, 209, 210, 212, 215, 219, 222, 223, 226, 229, 232, 245, 252
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A002822.

Programs

  • Mathematica
    Select[Range[6! ],PrimeQ[30*#-1]&&PrimeQ[30*#+1]&]
    Select[Range[300],AllTrue[30#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 21 2018 *)

A060210 Largest prime factor of 1+smaller term of twin primes.

Original entry on oeis.org

2, 3, 3, 3, 5, 7, 5, 3, 17, 3, 23, 5, 5, 3, 11, 19, 5, 5, 47, 13, 29, 7, 3, 11, 29, 19, 5, 103, 107, 11, 5, 137, 23, 13, 7, 17, 43, 7, 59, 13, 3, 41, 71, 43, 31, 11, 17, 11, 19, 31, 67, 5, 139, 283, 41, 149, 13, 313, 23, 13, 37, 13, 347, 29, 11, 71, 17, 373, 7, 11, 13, 397, 17
Offset: 1

Views

Author

Labos Elemer, Mar 20 2001

Keywords

Comments

Also: Largest prime factor of the average, or the sum, of twin prime pairs. - M. F. Hasler, Jan 03 2011

Examples

			101 is the 9th lesser twin, 102 = 2*3*17, and its max p factor is 17=a(9).
		

Crossrefs

Programs

  • Mathematica
    FactorInteger[1+#][[-1,1]]&/@Select[Partition[Prime[Range[500]],2,1], #[[2]]- #[[1]]==2&][[All,1]] (* Harvey P. Dale, Jan 16 2017 *)
  • PARI
    p=3; for(n=1,1e3, until(o+2==p,p=nextprime(2+o=p)); print1(vecmax(factor(p-1)[,1])","))  \\ M. F. Hasler, Jan 03 2011

A057767 Number of twin prime pairs between P(n)^2 and P(n+1)^2 where P(n) is the n-th prime.

Original entry on oeis.org

1, 2, 2, 4, 2, 7, 2, 4, 8, 2, 11, 7, 3, 11, 13, 13, 5, 19, 11, 3, 15, 14, 14, 21, 15, 7, 10, 6, 11, 42, 12, 27, 6, 45, 10, 20, 17, 21, 23, 25, 13, 49, 7, 20, 8, 52, 59, 23, 9, 16, 32, 9, 46, 33, 27, 43, 7, 30, 20, 12, 68, 88, 22, 18, 24, 88, 41, 70, 14
Offset: 1

Views

Author

Naohiro Nomoto, Oct 31 2000

Keywords

Comments

Conjecture: this sequence is always positive.
For n > 1 also the number of twin ranks k in A002822 between M(n) and M(n+1), where M(n) = (P(n)^2-1)/6. (Indeed, none of the three numbers {6k-1, 6k, 6k+1} will ever be equal to P(n)^2 if 6k+-1 are twin primes, therefore P(n)^2 <= 6k-1 < 6k+1 <= P(n+1)^2 <=> (P(n)^2-1)/6 <= k <= (P(n+1)^2-1)/6.) The twin prime conjecture is equivalent to say a(n) > 0 for infinitely many n. - M. F. Hasler, Jun 26 2019
Records of "lows" (such that a(k) > a(m) for all k > m) are (conjectured): a(1) = 1, a(10) = 2, a(20) = 3, a(33) = 6, a(57) = 7, a(89) = 10, a(140) = 19, a(190) = 21, a(236) = 30, a(256) = 33, a(265) = 35, a(307) = 42, a(346) = 43, a(384) = 44, a(495) = 51, a(498) = 55, a(545) = 62, a(555) = 68, a(613) = 71, a(643) = 76, a(673) = 79, a(719) = 87, a(723) = 93, a(755) = 94, a(772) = 96, a(872) = 98, a(936) = 107, ... None of these is proven, each one would imply the twin prime conjecture. - M. F. Hasler, Jun 26 2019
Record lows of a(n)/n are: 1/1 = 2/2 = 1.0, 2/3 = 0.66667, 2/5 = 0.4, 2/7 = 0.28571, 2/10 = 0.2, 3/20 = 0.15, 7/57 = 0.12281, 10/89 = 0.11236, 21/190 = 0.11053, 51/495 = 0.10303, 342/3435 = 0.099563, 716/7202 = 0.099417, 797/8126 = 0.098080, 793/8155 = 0.097241, 817/8463 = 0.096538, 892/9406 = 0.094833, ... - M. F. Hasler, Jun 27 2019

Examples

			From _M. F. Hasler_, Jun 26 2019: (Start)
Between P(1)^2 = 2^2 = 4 and P(2)^2 = 3^2 = 9 there is only the twin prime pair (5,7), whence a(1) = 1.
Between P(2)^2 = 3^2 = 9 and P(3)^2 = 5^2 = 25 there are the twin prime pairs (11,13) and (17,19) whence a(2) = 2.
Between P(3)^2 = 5^2 = 25 and P(4)^2 = 7^2 = 49 there are the twin prime pairs (29,31) and (41,43) whence a(3) = 2.
Between P(4)^2 = 7^2 = 49 and P(5)^2 = 11^2 = 121 there are the twin prime pairs (59,61), (71,73), (101,103) and (107,109), whence a(4) = 4.
etc. (End)
		

Programs

Extensions

Offset corrected to 1 by M. F. Hasler, Jun 26 2019

A120875 Product of twin primes minus 1.

Original entry on oeis.org

14, 34, 142, 322, 898, 1762, 3598, 5182, 10402, 11662, 19042, 22498, 32398, 36862, 39202, 51982, 57598, 72898, 79522, 97342, 121102, 176398, 186622, 213442, 272482, 324898, 359998, 381922, 412162, 435598, 656098, 675682, 685582, 736162
Offset: 1

Views

Author

Lekraj Beedassy, Jul 09 2006

Keywords

Comments

This sequence is a subsequence of A023515.

Crossrefs

Programs

  • Mathematica
    Times[#, # + 2] - 1 & /@ Select[Prime@ Range@ 150, PrimeQ[# + 2] &] (* Michael De Vlieger, Oct 23 2015 *)
  • PARI
    for(n=1, 200, if(prime(n+1)-prime(n)==2, print1(prime(n)*prime(n+1)-1", "))) \\ Altug Alkan, Oct 23 2015

Formula

a(n) = A037074(n)-1 = (A014574(n))^2 -2 = A075369(n)-2.
a(n) = 2*A120876(n). - Jason Kimberley, Oct 23 2015
a(n) = 36*A002822(n-1)^2-2, for n>1. - Jason Kimberley, Oct 23 2015
a(n) = A023515(A107770(n)). - Jason Kimberley, Oct 23 2015

A120876 (Product of twin primes - 1)/2.

Original entry on oeis.org

7, 17, 71, 161, 449, 881, 1799, 2591, 5201, 5831, 9521, 11249, 16199, 18431, 19601, 25991, 28799, 36449, 39761, 48671, 60551, 88199, 93311, 106721, 136241, 162449, 179999, 190961, 206081, 217799, 328049, 337841, 342791, 368081, 388961, 520199, 532511, 551249, 563921
Offset: 1

Views

Author

Lekraj Beedassy, Jul 09 2006

Keywords

Comments

This sequence is a subsequence of A102770.

Crossrefs

Cf. The subsequence A086870.

Programs

  • Mathematica
    (Times@@#-1)/2&/@Select[Partition[Prime[Range[200]], 2,1],Last[#]- First[#]== 2&] (* Harvey P. Dale, Jun 26 2011 *)
  • PARI
    for(n=1, 200, if(prime(n+1)-prime(n)==2, print1((prime(n)*prime(n+1)-1)/2", "))) \\ Altug Alkan, Oct 23 2015
    
  • PARI
    p=2; forprime(q=3, 1e3, if(q-p==2, print1(p*q\2", ")); p=q) \\ Charles R Greathouse IV, Apr 01 2016

Formula

a(n) = A120875(n)/2 = A075369(n)/2-1 = A075369(n)^2/2-1.
a(n) = 18*A002822(n-1)^2-1, for n>1.
a(n) = A102770(A107770(n)). - Jason Kimberley, Nov 10 2015

Extensions

Corrected by T. D. Noe, Oct 25 2006
Edited by Jason Kimberley, Oct 23 2015

A124520 Numbers k such that 14*k - 1 and 14*k + 1 are twin primes.

Original entry on oeis.org

3, 30, 33, 63, 75, 78, 93, 102, 123, 138, 153, 162, 165, 192, 195, 240, 252, 273, 297, 303, 342, 387, 393, 420, 435, 438, 450, 468, 483, 522, 525, 540, 588, 630, 633, 660, 663, 717, 738, 747, 750, 765, 798, 825, 837, 855, 957, 978, 993, 1023, 1032, 1062
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Examples

			3 is in the sequence since 14*3 - 1 = 41 and 14*3 + 1 = 43 are twin primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1100], And @@ PrimeQ[{-1, 1} + 14# ] &] (* Ray Chandler, Nov 16 2006 *)

Extensions

Extended by Ray Chandler, Nov 16 2006

A124521 Numbers k such that 16*k - 1 and 16*k + 1 are twin primes.

Original entry on oeis.org

12, 15, 27, 72, 93, 117, 132, 162, 168, 195, 198, 210, 258, 267, 300, 327, 330, 345, 435, 468, 642, 765, 813, 855, 903, 912, 960, 978, 993, 1128, 1143, 1182, 1290, 1350, 1353, 1365, 1392, 1398, 1440, 1632, 1680, 1713, 1737, 1797, 1848, 1860, 1947, 1953, 1962
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Examples

			12 is in the sequence since 16*12 - 1 = 191 and 16*12 + 1 = 193 are twin primes.
		

Crossrefs

Programs

  • Maple
    A124521:=n->`if`(isprime(16*n-1) and isprime(16*n+1), n, NULL): seq(A124521(n), n=1..2000); # Wesley Ivan Hurt, Oct 10 2014
  • Mathematica
    Select[Range[2000], And @@ PrimeQ[{-1, 1} + 16# ] &] (* Ray Chandler, Nov 16 2006 *)

Extensions

Extended by Ray Chandler, Nov 16 2006

A167379 Let p and q be twin primes, excluding the pair (3,5). Then p+q is always divisible by 6 and we set a(n) = (p+q)/6.

Original entry on oeis.org

2, 4, 6, 10, 14, 20, 24, 34, 36, 46, 50, 60, 64, 66, 76, 80, 90, 94, 104, 116, 140, 144, 154, 174, 190, 200, 206, 214, 220, 270, 274, 276, 286, 294, 340, 344, 350, 354, 364, 384, 410, 426, 430, 434, 440, 476, 484, 494, 496, 536, 540, 556, 566, 574, 596, 624, 626
Offset: 1

Views

Author

Tanin (Mirza Sabbir Hossain Beg) (mirzasabbirhossainbeg(AT)yahoo.com), Nov 02 2009

Keywords

Comments

By definition, q = p+2. Hence (p+q)/6 = (p+p+2)/6 = (2p+2)/6 = (p+1)/3. Thus a(n) = (1+A001359(n+1))/3. - Jonathan Vos Post, Nov 03 2009

Examples

			First (lesser of twin prime pair) excluding (3,5) = 5; (5+1)/3 = 2, hence A167379(1) = 2. The 10th (lesser of twin prime pair) excluding (3,5) = 137; (137+1)/3 = 46, hence A167379(10)= 46. - _Jonathan Vos Post_, Nov 03 2009
		

Crossrefs

Cf. A002822. [Zak Seidov, Nov 02 2009]

Programs

  • Magma
    [2*n: n in [1..630] | IsPrime(6*n+1) and IsPrime(6*n-1)]; // Vincenzo Librandi, Jun 13 2016
  • Mathematica
    Total[#]/6&/@Select[Partition[Prime[Range[3,500]],2,1],#[[2]]-#[[1]] == 2&] (* Harvey P. Dale, Jan 30 2013 *)
    2 Select[Range[35000], PrimeQ[6 # - 1] && PrimeQ[6 # + 1] &] (* Vincenzo Librandi, Jun 13 2016 *)

Formula

a(n) = 2*A002822(n). - R. J. Mathar, Nov 09 2009
a(n) = (1+A001359(n+1))/3. - Jonathan Vos Post, Nov 03 2009

Extensions

Edited (but not checked) by N. J. A. Sloane, Nov 02 2009
Extended by R. J. Mathar, Nov 09 2009

A182482 6*n*A182481(n)-1.

Original entry on oeis.org

5, 11, 17, 71, 29, 71, 41, 191, 107, 59, 197, 71, 311, 419, 179, 191, 101, 107, 227, 239, 881, 659, 137, 431, 149, 311, 809, 2687, 347, 179, 1301, 191, 197, 1019, 419, 431, 1997, 227, 1871, 239, 1229, 2267, 1031, 1319, 269, 827, 281, 1151, 881, 599
Offset: 1

Views

Author

Vladimir Shevelev, May 01 2012

Keywords

Comments

By the construction of A182481, every term is lesser of twin primes.
Every lesser more than 3 of twin primes appears in the sequence.
Number m=(a(n)+1)/6 is the place of the last appearance of a(n); m is multiple of all previous places of the appearance of a(n), if they exist.
In particular, a(n) appears only once, if (a(n)+1)/6 is 1 or prime (in this case n is 1 or prime and A182481(n)=1). Conversely is not true. For example, a(10)=59 appears only once, although 10 is not prime.

Examples

			All places where 71 appears are 4,6,12. "Thus" 12 is multiple of 4 and 6.
Since (101+1)/6=17 is prime, then 101 appears only once.
		

Crossrefs

A191626 Integers n such that both 6n and 36n fall between pairs of twin primes, that is, 6n-1, 6n+1, 36n-1, and 36n+1 are prime.

Original entry on oeis.org

2, 3, 5, 12, 23, 32, 45, 52, 58, 72, 107, 137, 138, 175, 182, 270, 278, 287, 325, 562, 577, 578, 597, 703, 747, 753, 872, 980, 1022, 1160, 1325, 1372, 1438, 1477, 1540, 1892, 1950, 2007, 2018, 2313, 2335, 2387, 2597, 2608, 2705, 2742, 2782, 3008
Offset: 1

Views

Author

Andrea Raffetti, Jul 11 2011

Keywords

Comments

Infinite under Dickson's conjecture. [Charles R Greathouse IV, Jul 24 2011]

Examples

			5 is in the list because 5*6=30, 5*36=180 and both fall between a pair of twin primes (29,31 and 179,181).
		

Crossrefs

Subsequence of A002822.
Cf. A014574.

Programs

  • Mathematica
    Select[Range[3100],And@@PrimeQ[{6#+1,6#-1,36#+1,36#-1}]&] (* Harvey P. Dale, Jul 27 2011 *)
Previous Showing 41-50 of 94 results. Next