A348413 a(0) = A002858(1) = 1, followed by the greatest Ulam numbers A002858 to form a complete sequence (see algorithm below).
1, 2, 4, 8, 16, 28, 57, 114, 221, 451, 893, 1792, 3549, 7104, 14212, 28445, 56894, 113792, 227554, 455124, 910208, 1820449, 3640907, 7281813, 14563613, 29127251, 58254501, 116508984, 233017889, 466035877, 932071736
Offset: 0
Examples
Given that the first 7 terms of the sequence are 1, 2, ..., 28, 57 then a(7)=(greatest Ulam number) <= (1+2+...+28, 57) + 1 = 117, hence a(7)=114.
Links
- Wikipedia, Ulam number.
Crossrefs
Cf. A002858.
Programs
-
Mathematica
lst1 = Last/@ReadList["https://oeis.org/A002858/b002858.txt", {Number, Number}]; lst={1, 2}; n=3; Do[s=Total@lst; While[s+1>=lst1[[n]], n++]; AppendTo[lst, lst1[[n-1]]], 16]; lst
Formula
a(n) = (greatest Ulam number) <= 1+Sum_{i=0..n-1} a(i), with a(0) = 1.
Extensions
a(18)-a(30) from Amiram Eldar, Oct 17 2021
Comments