cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 95 results. Next

A061350 Maximal size of Aut(G) where G is a finite Abelian group of order n.

Original entry on oeis.org

1, 1, 2, 6, 4, 2, 6, 168, 48, 4, 10, 12, 12, 6, 8, 20160, 16, 48, 18, 24, 12, 10, 22, 336, 480, 12, 11232, 36, 28, 8, 30, 9999360, 20, 16, 24, 288, 36, 18, 24, 672, 40, 12, 42, 60, 192, 22, 46, 40320, 2016, 480, 32, 72, 52, 11232, 40, 1008, 36, 28, 58, 48, 60, 30, 288
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 07 2001

Keywords

Comments

a(n) is multiplicative; if n = p^m is a prime power the maximal size of Aut(G) is attained by the elementary Abelian group G =(C_p)^m and then Aut(G) is GL(m,p) and a(n) = (p^m - 1)*(p^m - p)*...*(p^m - p^(m-1)). For general n the maximum will be for the direct product of the (C_p)^m over the prime powers dividing n and then the automorphism group is the direct product of the GL(m,p).
Equivalently, maximal size of Aut(G) where G is a nilpotent group of order n. - Eric M. Schmidt, Feb 27 2013

Crossrefs

Programs

  • Maple
    A061350 := proc(n) local ans, i, j; ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*(mul(ifactors(n)[2][i][1]^ifactors(n)[2][i][2] - ifactors(n)[2][i][1]^(j - 1), j = 1..ifactors(n)[2][i][2])): od: RETURN(ans) end:
  • Mathematica
    a[p_?PrimeQ] := p-1; a[1] = 1; a[n_] := Times @@ (Product[#[[1]]^#[[2]] - #[[1]]^k, {k, 0, #[[2]]-1}]& /@ FactorInteger[n]); Table[a[n], {n, 1, 63}] (* Jean-François Alcover, May 21 2012, after Maple *)

Extensions

More terms from Vladeta Jovovic, Jun 12 2001

A065128 Number of invertible n X n matrices mod 4 (i.e., over the ring Z_4).

Original entry on oeis.org

1, 2, 96, 86016, 1321205760, 335522845163520, 1385295986380096143360, 92239345887620476544860815360, 98654363640526679389774053813465907200, 1691558770638735027870457216848672340872423014400, 464518059995994038184379206447729320401459864818351813427200
Offset: 0

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 14 2001

Keywords

Crossrefs

Column k=4 of A316622.

Programs

  • Mathematica
    a[n_] := 4^(n^2)*Product[1 - 1/2^k, {k, 1, n} ]; Table[ a[n], {n, 0, 10} ]
  • PARI
    for(n=1,11,print(4^(n^2)*prod(k=1,n,(1-1/2^k))))

Formula

a(n) = 4^(n^2) * Product_{k=1..n} (1 - 1/2^k).
a(n) = 2^(n^2) * A002884(n). - Geoffrey Critzer, Feb 04 2018
From Amiram Eldar, Jul 06 2025: (Start)
a(n) = Product_{k=1..n} 2*A060195(k).
a(n) ~ c * 4^(n^2), where c = A048651. (End)

Extensions

More terms from Robert G. Wilson v and Jason Earls, Nov 16 2001

A270880 Triangle read by rows: T(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2).

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 28, 28, 0, 1, 400, 1680, 840, 0, 1, 10416, 168640, 277760, 83328, 0, 1, 525792, 36053248, 159989760, 139991040, 27998208, 0, 1, 51116992, 17811244032, 209056841728, 419919790080, 227569434624, 32509919232
Offset: 0

Views

Author

Michel Marcus, Mar 25 2016

Keywords

Examples

			Triangle begins:
1;
0, 1;
0, 1, 3;
0, 1, 28, 28;
0, 1, 400, 1680, 840;
0, 1, 10416, 168640, 277760, 83328;
...
		

Crossrefs

Cf. A053601 (right diagonal), A270881 (row sums), A270882.

Programs

  • Mathematica
    g[n_] := q^Binomial[n, 2] *FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2;Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {m}]]], {m, 1, n}], {n, 1, 6}] // Grid (* Geoffrey Critzer, May 18 2017 *)

Formula

T(n,m) = Sum_ g(n)/(g(n_1)*g(n_2)***g(n_m))/(a_1!*a_2!***a_n!) where the sum is over all partitions of n into m parts and a_1,a_2,...,a_n is the part count signature of the partition and g(n) = A002884(n). - Geoffrey Critzer, May 18 2017 (after formula given in first Ellerman link above).

A289538 Expected dimension of the null space of a random linear operator on an n-dimensional vector space over the field with two elements as n -> infinity.

Original entry on oeis.org

8, 5, 0, 1, 7, 9, 8, 3, 0, 8, 7, 3, 9, 7, 9, 3, 3, 2, 8, 7, 6, 0, 6, 3, 2, 8, 1, 4, 9, 3, 5, 9, 1, 8, 7, 8, 8, 4, 0, 4, 2, 6, 7, 2, 5, 9, 7, 3, 2, 0, 2, 7, 2, 5, 9, 8, 7, 3, 5, 8, 0, 5, 2, 5, 5, 6, 3, 0, 9, 5, 9, 4, 1, 1, 8, 3, 3, 1, 3, 4, 4, 3, 6, 3, 0, 4, 1, 0, 6, 7, 0, 8, 8, 5, 9, 3, 5, 6, 5, 8
Offset: 0

Views

Author

Geoffrey Critzer, Jul 10 2017

Keywords

Comments

More precisely, let X:L(V) -> {0,1,2,...,n} be the random variable that assigns to each linear operator T on n-dimensional vector space V over F_2, the integer j in {0,1,2,...,n} such that the dimension of the null space of T = j. Then E(X) = 0.850179183...

Crossrefs

Programs

  • Mathematica
    nn = 300; q := 2;A[x_] := Sum[1/(FunctionExpand[QFactorial[j, q]] (q - 1)^j q^Binomial[j, 2]) Product[1 - 1/q^i, {i, j + 1, \[Infinity]}] x^j, {j, 0, nn}];RealDigits[
      N[Normal[Series[D[A[x], x] /. x -> 1, {x, 0, nn}]], 100]][[1]]

Formula

Let A(x) = Sum_{n>=0} Product_{i>=n+1} (1-1/2^i)*x^n/A002884(n). Then A'(1) = 0.85017983...

A335000 Orders of the groups PSL(m,q) in increasing order as q runs through the prime powers (with repetitions).

Original entry on oeis.org

6, 12, 60, 60, 168, 168, 360, 504, 660, 1092, 2448, 3420, 4080, 5616, 6072, 7800, 9828, 12180, 14880, 20160, 20160, 25308, 32736, 34440, 39732, 51888, 58800, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 262080, 265680, 285852, 352440, 372000, 456288, 515100, 546312
Offset: 1

Views

Author

Michel Marcus, May 19 2020

Keywords

Comments

60 is the order of PSL(2,4) and of PSL(2,5).
168 is the order of PSL(2,7) and of PSL(3,2).
20160 is the order of PSL(4,2) and of PSL(3,4).
Other repetitions > 20160 for PSL(m,q) groups are not known.
See A334884 and A334994 for variations of this sequence.

Examples

			a(5) = #PSL(2,7) = (7^2-1)*7/gcd(2,6) = 168, and,
a(6) = #PSL(3,2) = (2^3-1)*(2^3-2)*2^2/gcd(3,1) = 168.
		

Crossrefs

Cf. A002884 \ {1} (PSL(n,2)), A117762 (PSL(2, prime(n))).
Cf. A334884 (another case with repetitions), A334994 (without repetitions).

Formula

#PSL(m,q) = (Product_{j=0..m-2} (q^m - q^j)) * q^(m-1) / gcd(m,q-1). - Bernard Schott, May 19 2020

A346082 Number of cyclic n X n matrices over GF(2).

Original entry on oeis.org

1, 2, 14, 412, 50832, 25517184, 51759986688, 422000664182784, 13794938575436906496, 1805965390215106718072832, 946278871976706458877777936384, 1983897413727786229545246093886881792, 16639646499680599124923569106989157705580544, 558292116984541859085729903695019486031085083557888
Offset: 0

Views

Author

Geoffrey Critzer, Jul 04 2021

Keywords

Comments

An n X n matrix A is cyclic if there is a vector v in GF(2)^n such that {A^i(v) : i>=0} spans GF(2)^n. Equivalently if the characteristic polynomial of A is equal to the minimal polynomial.

Crossrefs

Main diagonal of A347010.

Programs

  • Mathematica
    nn = 13; A001037 = Table[1/n Sum[MoebiusMu[n/d] 2^d, {d, Divisors[n]}], {n, 1, nn}]; Table[Product[2^n - 2^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[
      Series[Product[(1 + 2^i x^i/((2^i - 1) (2^i - x^i)))^ A001037[[i]], {i, 1, nn}], {x, 0, nn}], x]

Formula

Sum_{n>=0} a(n) x^n/A002884(n) = Product_{i>=1} (1 + x^i/((2^i-1)(1-x/2)^i))^A001037(i).

A348015 Number of periodic n X n matrices over GF(2).

Original entry on oeis.org

1, 2, 13, 365, 43801, 21725297, 43798198753, 355991759464385, 11619571028917526401, 1520025803718875133673217, 796153035368657542014822907393, 1668838669721233396228446711227874305, 13995815633937307151473642050515241531340801
Offset: 0

Views

Author

Geoffrey Critzer, Sep 24 2021

Keywords

Comments

Here, T is a periodic matrix if T = T^k for some k > 1. T is periodic iff image(T) = image(T^2) iff x^2 does not divide the minimal polynomial of T.

Examples

			a(2) = 13 because there are 16 2 X 2 matrices over GF(2) and all are recurrent except for {{0,0},{1,0}}, {{0,1},{0,0}}, and {{1,1},{1,1}}.  16-3 = 13.
		

Crossrefs

Cf. A002884.
Row sums of A348622.

Programs

  • Maple
    b:= proc(n) option remember; mul(2^n-2^i, i=0..n-1) end:
    a:= n-> add(b(n)/b(n-k), k=0..n):
    seq(a(n), n=0..14);  # Alois P. Heinz, Oct 30 2021
  • Mathematica
    nn=12; q = 2; b[p_, i_] := Count[p, i];
    s[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];
    aut[deg_, p_] := Product[Product[q^(s[p, i] deg) - q^((s[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] =Table[1/n Sum[MoebiusMu[n/m] q^m, {m, Divisors[n]}], {n, 1,nn}];l[greatestpart_] := Level[Table[IntegerPartitions[n, {0, n}, Range[greatestpart]], {n, 0, nn}], {2}];
    g1[u_, v_, deg_] :=Total[Map[v u^(deg Total[#])/aut[deg, #] &, l[1]]];
    g2[u_, v_, deg_] :=Total[Map[v u^(deg Total[#])/aut[deg, #] &, l[nn]]];
    Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[
      Series[g1[u, 1, 1] g2[u, 1, 1] Product[g2[u, 1, d]^\[Nu][[d]], {d, 2, nn}] , {u, 0, nn}], u]

Formula

a(n) = Sum_{d=0...n} A002884(n)/A002884(n-d). - Geoffrey Critzer, Oct 30 2021
Sum_{n>=0} a(n)u^n/A002884(n) = E(u)/(1-u) where E(u) = Sum_{n>=0} u^n/A002884(n). - Geoffrey Critzer, Oct 30 2021
Limit_{n->infinity} a(n)/2^(n^2) = (Product_{r>=1} (1-1/2^r)) * Sum_{n>=0} 1/A002884(n) = 0.62744086981206237307... . - Geoffrey Critzer, Oct 30 2021
Sum_{n>=0} a(n)*x^n/B(n) = e(x)*g(x) where e(x) = Sum_{n>=0} x^n/B(n), g(x) = Sum_{n>=0} Product_{i=0..n-1} (q^n-q^i)*x^n/B(n), B(n) = Product_{i=0..n-1} (q^n-q^i)/(q-1)^n and q=2. - Geoffrey Critzer, Jan 03 2025

Extensions

Data terms for n >= 3 corrected by Geoffrey Critzer, Oct 30 2021
Title improved by Geoffrey Critzer, Sep 16 2022

A062240 Number of subgroups of Chevalley group A_n(2) (the group of nonsingular n X n matrices over GF(2) ).

Original entry on oeis.org

1, 6, 179, 48337, 54091780, 922300149178
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 30 2001

Keywords

Crossrefs

Cf. A002884.

Programs

  • Magma
    [&+[s`length : s in Subgroups(GL(n, 2))] : n in [1..6]];  // Robin Visser, Aug 14 2023

Extensions

a(5)-a(6) from Robin Visser, Aug 14 2023

A086699 Number of n X n matrices over GF(2) with rank n-1.

Original entry on oeis.org

1, 9, 294, 37800, 19373760, 39687459840, 325139829719040, 10654345790226432000, 1396491759480328106803200, 732164571206732295657278668800, 1535460761275478347250381697633484800, 12880379193826999985837000446453418557440000
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 28 2003

Keywords

Comments

a(n)/2^(n^2) is the probability that a random linear operator T on an n dimensional vector space over the field with two elements is such that the dimension of the range of T equals n-1. This probability is Product{j>=2} 1 - 1/2^j which is 2 times the probability that the dimension of the range of T equals n. Cf. A048651. - Geoffrey Critzer, Jun 28 2017

Crossrefs

Programs

  • Mathematica
    Table[Product[(q^n - q^i)^2/(q^(n - 1) - q^i), {i, 0, n - 2}] /.  q -> 2, {n, 0, 15}] (* Geoffrey Critzer, Jun 28 2017 *)
  • PARI
    a(n) = prod(j=0, n-2, (2^n - 2^j)^2 / (2^(n-1)- 2^j)); \\ Michel Marcus, Jun 28 2017

Formula

for n>=2 : a(n) = product j=0...n-2 (2^n - 2^j)^2 / (2^(n-1)- 2^j).

Extensions

More terms from David Wasserman, Mar 28 2005

A316623 Array read by antidiagonals: T(n,k) is the order of the group SL(n,Z_k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 24, 168, 1, 1, 1, 48, 5616, 20160, 1, 1, 1, 120, 43008, 12130560, 9999360, 1, 1, 1, 144, 372000, 660602880, 237783237120, 20158709760, 1, 1, 1, 336, 943488, 29016000000, 167761422581760, 42064805779476480, 163849992929280, 1
Offset: 0

Views

Author

Andrew Howroyd, Jul 08 2018

Keywords

Comments

All rows are multiplicative.
Equivalently, the number of n X n matrices mod k with determinant 1.
Also, for k prime (but not higher prime powers) the number of n X n matrices over GF(k) with determinant 1.

Examples

			Array begins:
==============================================================
n\k| 1       2        3         4           5           6
---+----------------------------------------------------------
0  | 1       1        1         1           1            1 ...
1  | 1       1        1         1           1            1 ...
2  | 1       6       24        48         120          144 ...
3  | 1     168     5616     43008      372000       943488 ...
4  | 1   20160 12130560 660602880 29016000000 244552089600 ...
5  | 1 9999360 ...
...
		

Crossrefs

Rows n=2..4 are A000056, A011785, A011786.
Columns k=2..5, 7 are A002884, A003787, A011787, A003789, A003790.
Cf. A316622.

Programs

  • GAP
    T:=function(n,k) if k=1 or n=0 then return 1; else return Order(SL(n, Integers mod k)); fi; end;
    for n in [0..5] do Print(List([1..6], k->T(n,k)), "\n"); od;
    
  • Mathematica
    T[n_, k_] := If[k == 1 || n == 0, 1, k^(n^2-1) Product[1 - p^-j, {p, FactorInteger[k][[All, 1]]}, {j, 2, n}]];
    Table[T[n-k+1, k], {n, 0, 8}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Sep 19 2019 *)
  • PARI
    T(n,k)={my(f=factor(k)); if(n<1, n==0, k^(n^2-1) * prod(i=1, #f~, my(p=f[i,1]); prod(j=2, n, (1 - p^(-j)))))}

Formula

T(n,p^e) = (p^e)^(n^2-1) * Product_{j=2..n} (1 - 1/p^j) for prime p, n > 0.
Previous Showing 31-40 of 95 results. Next