A229648
Cogrowth function of the group Baumslag-Solitar(6,6).
Original entry on oeis.org
1, 4, 28, 232, 2092, 19864, 195352, 1970924, 20277036, 211864264, 2241723728, 23969620844, 258583473640, 2811005437348, 30762114003572, 338624821158892, 3747021722921964, 41656518905688504, 465062224305678280, 5211973807553021868
Offset: 0
For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
The cogrowth sequences for BS(N,N) for N = 1..10 are
A002894,
A229644,
A229645,
A229646,
A229647,
A229648,
A229649,
A229650,
A229651,
A229652.
A229649
Cogrowth function of the group Baumslag-Solitar(7,7).
Original entry on oeis.org
1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275692, 211825564, 2240852928, 23952708696, 258285519688, 2806105225928, 30685515254240, 337472968923532, 3730218568024236, 41417273400310152, 461722437389957236, 5166105817092273412
Offset: 0
For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
The cogrowth sequences for BS(N,N) for N = 1..10 are
A002894,
A229644,
A229645,
A229646,
A229647,
A229648,
A229649,
A229650,
A229651,
A229652.
A229650
Cogrowth function of the group Baumslag-Solitar(8,8).
Original entry on oeis.org
1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275660, 211823836, 2240798048, 23951367224, 258257552968, 2805581350056, 30676425237024, 337324008602512, 3727882769574860, 41381900166952348, 461201577710442388, 5158610797198820800
Offset: 0
For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
The cogrowth sequences for BS(N,N) for N = 1..10 are
A002894,
A229644,
A229645,
A229646,
A229647,
A229648,
A229649,
A229650,
A229651,
A229652.
A229651
Cogrowth function of the group Baumslag-Solitar(9,9).
Original entry on oeis.org
1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275660, 211823800, 2240795888, 23951292204, 258255572584, 2805537209648, 30675548482880, 337307986673572, 3727607821613388, 41377406950962504, 461130952671387592, 5157535231753964268
Offset: 0
For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
The cogrowth sequences for BS(N,N) for N = 1..10 are
A002894,
A229644,
A229645,
A229646,
A229647,
A229648,
A229649,
A229650,
A229651,
A229652.
A229652
Cogrowth function of the group Baumslag-Solitar(10,10).
Original entry on oeis.org
1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275660, 211823800, 2240795848, 23951289564, 258255473032, 2805534386256, 30675481454184, 337306578693652, 3727580774618060, 41376921517941032, 461122691909043112, 5157400529078643552
Offset: 0
For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
The cogrowth sequences for BS(N,N) for N = 1..10 are
A002894,
A229644,
A229645,
A229646,
A229647,
A229648,
A229649,
A229650,
A229651,
A229652.
A275652
a(n) = binomial(3*n,3*n/2)*binomial(2*n,n)*binomial(5*n/2,n/2)/binomial(n,n/2).
Original entry on oeis.org
1, 10, 300, 11440, 485100, 21841260, 1022041020, 49128552000, 2408829328620, 119918393838100, 6042249840712800, 307438844121252480, 15770112362658517500, 814459593645444166560, 42308586942403276440000, 2208850973597860123741440, 115825519836558228435979500
Offset: 0
Cf.
A002894,
A245086,
A275653,
A275654,
A275655,
A276098,
A276100,
A276101,
A276102,
A352651,
A352652,
A365025.
-
seq(simplify(factorial(3*n)*factorial(n/2)*factorial(5*n/2)/(factorial(n)^3*factorial(3*n/2)^2)), n = 0 .. 20);
-
Table[Binomial[3 n, 3 n/2] Binomial[2 n, n] Binomial[5 n/2, n/2] / Binomial[n, n/2], {n, 0, 16}] (* Michael De Vlieger, Aug 07 2016 *)
-
a(n) = sum(k = 0, n, binomial(2*n-k-1,n-k)*binomial(3*n,k)^2); \\ Michel Marcus, Apr 21 2022
-
from math import factorial
from sympy import factorial2
def A275652(n): return int(factorial(3*n)*factorial2(5*n)*factorial2(n)//factorial2(3*n)**2//factorial(n)**3) # Chai Wah Wu, Aug 08 2023
A053175
Catalan-Larcombe-French sequence.
Original entry on oeis.org
1, 8, 80, 896, 10816, 137728, 1823744, 24862720, 346498048, 4911669248, 70560071680, 1024576061440, 15008466534400, 221460239482880, 3287994183188480, 49074667327062016, 735814252604162048
Offset: 0
G.f. = 1 + 8*x + 80*x^2 + 896*x^3 + 10816*x^4 + 137728*x^5 + 1823774*x^6 + ...
- P. J. Larcombe, D. R. French and E. J. Fennessey, The asymptotic behavior of the Catalan-Larcombe-French sequence {1, 8, 80, 896, 10816, ...}, Utilitas Mathematica, 60 (2001), 67-77.
- P. J. Larcombe, D. R. French and C. A. Woodham, A note on the asymptotic behavior of a prime factor decomposition of the general Catalan-Larcombe-French number, Congressus Numerantium, 156 (2002), 17-25.
- T. D. Noe, Table of n, a(n) for n=0..200
- E. Catalan, Sur les Nombres de Segner, Rend. Circ. Mat. Pal., 1 (1887), 190-201. [From _Peter Luschny_, Jun 26 2009]
- Lane Clark, An asymptotic expansion for the Catalan-Larcombe-French sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.1.
- A. F. Jarvis, P. J. Larcombe and D. R. French, Linear recurrences between two recent integer sequences, Congressus Numerantium, 169 (2004), 79-99.
- A. F. Jarvis, P. J. Larcombe and D. R. French, Applications of the a.g.m. of Gauss: some new properties of the Catalan-Larcombe-French sequence, Congressus Numerantium, 161 (2003), 151-162.
- A. F. Jarvis, P. J. Larcombe and D. R. French, Power series identities generated by two recent integer sequences, Bulletin ICA, 43 (2005), 85-95.
- A. F. Jarvis, P. J. Larcombe and D. R. French, On Small Prime Divisibility of the Catalan-Larcombe-French sequence, Indian Journal of Mathematics, 47 (2005), 159-181.
- A. F. Jarvis, P. J. Larcombe and D. R. French, A short proof of the 2-adic valuation of the Catalan-Larcombe-French number, Indian Journal of Mathematics, 48 (2006), 135-138.
- F. Jarvis, H. A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J (22) (2010) 171.
- Xiao-Juan Ji, Zhi-Hong Sun, Congruences for Catalan-Larcombe-French numbers, arXiv:1505.00668 [math.NT], 2015 and JIS vol 19 (2016) # 16.3.4
- P. J. Larcombe, A new asymptotic relation between two recent integer sequences, Congressus Numerantium, 175 (2005), 111-116.
- Peter J. Larcombe, Daniel R. French, On the “Other” Catalan Numbers: A Historical Formulation Re-Examined, Congressus Numerantium, 143 (2000), 33-64.
- P. J. Larcombe and D. R. French, On the integrality of the Catalan-Larcombe-French sequence {1, 8, 80, 896, 10816, ...}, Congressus Numerantium, 148 (2001), 65-91.
- P. J. Larcombe and D. R. French, A new generating function for the Catalan-Larcombe-French sequence: proof of a result by Jovovic, Congressus Numerantium, 166 (2004), 161-172.
- Guo-Shuai Mao, Proof of two supercongruences conjectured by Z.-W.Sun involving Catalan-Larcombe-French numbers, arXiv:1511.06222 [math.NT], 2015.
- Brian Yi Sun, Baoyindureng Wu, Two-log-convexity of the Catalan-Larcombe-French sequence, arXiv:1602.04909 [math.CO], 2016. Also Journal of Inequalities and Applications, 2015, 2015:404; DOI: 10.1186/s13660-015-0920-0.
- Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
- N. M. Temme, Examples of 3_F_2-polynomials, Asymptotic Methods for Integrals, Chapter 13, pp. 167-179 (2014).
- Yang Wen, On the Log-Concavity of the Root of the Catalan-Larcombe-French Numbers, American Journal of Mathematical and Computer Modelling, 2017; 2(4): 95-98.
- E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
-
a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 8 else (8*(3*n^2 -3*n+1)*a(n-1)-128*(n-1)^2*a(n-2))/n^2 fi end; # Peter Luschny, Jun 26 2009
-
a[ n_] := SeriesCoefficient[ EllipticK[ (8 x /(1 - 8 x))^2] / ((1 - 8 x) Pi/2), {x, 0, n}]; (* Michael Somos, Aug 01 2011 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 8 x] BesselI[ 0, 4 x]^2, {x, 0, n}]]; (* Michael Somos, Aug 01 2011 *)
Table[(-8)^n Sqrt[Pi] HypergeometricPFQRegularized[{1/2, -n, -n}, {1, 1/2 - n}, -1]/n!, {n, 0, 20}] (* Vladimir Reshetnikov, May 21 2016 *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / agm( 1, 1 - 16*x + x * O(x^n)), n))}; /* Michael Somos, Feb 12 2003 */
-
{a(n) = if( n<0, 0, polcoeff( sum( k=0, n, binomial( 2*k ,k)^2 * (2*x - 16*x^2)^k, x * O(x^n)), n))}; /* Michael Somos, Mar 04 2003 */
A357568
a(n) = 9*binomial(2*n,n)^2 - 8*binomial(3*n,n).
Original entry on oeis.org
1, 12, 204, 2928, 40140, 547512, 7535472, 105077376, 1484848332, 21237645000, 306972655704, 4477160465856, 65802123629424, 973487343836448, 14483651478207360, 216550246159148928, 3251660678391659724, 49011343741651501800, 741221951008966181160, 11243583961952559386400
Offset: 0
Examples of supercongruences:
a(11) - a(1) = 4477160465856 - 12 = (2^2)*3*(11^5)*101*22937 == 0 (mod 11^5).
a(5^2) - a(5) = 143816772358933669354266172512 - 547512 = (2^3)*3*(5^9)*167191* 194659*94271599039 == 0 (mod 5^9).
-
seq(9*binomial(2*n,n)^2 - 8*binomial(3*n,n), n = 0..20);
-
A357568[n_] := 9*Binomial[2*n, n]^2 - 8*Binomial[3*n, n];
Array[A357568, 25, 0] (* Paolo Xausa, Jul 17 2024 *)
A001451
a(n) = (5*n)!/((3*n)!*n!*n!).
Original entry on oeis.org
1, 20, 1260, 100100, 8817900, 823727520, 79919739900, 7962100660800, 808906548235500, 83426304143982800, 8707404737345073760, 917663774856743842200, 97491279924241456098300, 10427604345391237790688000, 1121786259855036145008408000
Offset: 0
G.f. = 1 + 20*x + 1260*x^2 + 100100*x^3 + 8817900*x^4 + 823727520*x^5 + ... - _Michael Somos_, Aug 12 2018
-
List([0..15],n->Factorial(5*n)/(Factorial(3*n)*Fact0rial(n)*Factorial(n))); # Muniru A Asiru, Aug 12 2018
-
[Factorial(5*n)/(Factorial(3*n)*Factorial(n)*Factorial(n)): n in [0..30]]; // Vincenzo Librandi, May 22 2011
-
f := n->(5*n)!/((3*n)!*n!*n!);
-
Table[(5*n)!/((3*n)!*n!*n!), {n, 0, 20}] (* Vincenzo Librandi, Sep 04 2012 *)
A287318
Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 36, 20, 0, 1, 8, 90, 400, 70, 0, 1, 10, 168, 1860, 4900, 252, 0, 1, 12, 270, 5120, 44730, 63504, 924, 0, 1, 14, 396, 10900, 190120, 1172556, 853776, 3432, 0, 1, 16, 546, 19920, 551950, 7939008, 32496156, 11778624, 12870, 0
Offset: 0
Arrays start:
k\n| 0 1 2 3 4 5 6
---|---------------------------------------------------------
k=0| 1, 0, 0, 0, 0, 0, 0, ... A000007
k=1| 1, 2, 6, 20, 70, 252, 924, ... A000984
k=2| 1, 4, 36, 400, 4900, 63504, 853776, ... A002894
k=3| 1, 6, 90, 1860, 44730, 1172556, 32496156, ... A002896
k=4| 1, 8, 168, 5120, 190120, 7939008, 357713664, ... A039699
k=5| 1, 10, 270, 10900, 551950, 32232060, 2070891900, ... A287317
k=6| 1, 12, 396, 19920, 1281420, 96807312, 8175770064, ... A356258
k=7| 1, 14, 546, 32900, 2570050, 238935564, 25142196156, ...
k=8| 1, 16, 720, 50560, 4649680, 514031616, 64941883776, ...
k=9| 1, 18, 918, 73620, 7792470, 999283068, 147563170524, ...
-
A287318_row := proc(k, len) local b, ser;
b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
seq((2*i)!*coeff(ser,x,i), i=0..len-1) end:
for k from 0 to 6 do A287318_row(k, 9) od;
-
Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (2 n)!, {n, 0, 6}], {k, 0, 6}]
Comments