A186414
a(n) = binomial(2n,n)^3/(n+1)^2.
Original entry on oeis.org
1, 2, 24, 500, 13720, 444528, 16099776, 631628712, 26317863000, 1149330319280, 52120705189696, 2437827529099872, 117006104720150464, 5740095404246000000, 286939169121965760000, 14579498741074214418000
Offset: 0
-
[Binomial(2*n,n)^3/(n+1)^2: n in [0..50]]; // Vincenzo Librandi, Mar 27 2011
-
Table[Binomial[2n, n]^3/(n + 1)^2, {n, 0, 20}]
-
makelist(binomial(2*n,n)^3/(n+1)^2,n,0,40);
A224734
G.f.: exp( Sum_{n>=1} binomial(2*n,n)^2 * x^n/n ).
Original entry on oeis.org
1, 4, 26, 216, 2075, 21916, 247326, 2930216, 36028117, 456089076, 5910983050, 78100285784, 1048696065394, 14275198859304, 196610207633100, 2735542102308752, 38400942393884068, 543307627503591440, 7740605626606127512, 110970838624540461472, 1599834676405793089013
Offset: 0
G.f.: A(x) = 1 + 4*x + 26*x^2 + 216*x^3 + 2075*x^4 + 21916*x^5 + 247326*x^6 +...
where
log(A(x)) = 2^2*x + 6^2*x^2/2 + 20^2*x^3/3 + 70^2*x^4/4 + 252^2*x^5/5 + 924^2*x^6/6 + 3432^2*x^7/7 + 12870^2*x^8/8 +...+ A000984(n)^2*x^n/n +...
-
CoefficientList[Series[Exp[4*x*HypergeometricPFQ[{1, 1, 3/2, 3/2}, {2, 2, 2}, 16*x]], {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 27 2025 *)
-
{a(n)=polcoeff(exp(sum(k=1,n,binomial(2*k,k)^2*x^k/k)+x*O(x^n)),n)}
for(n=0,20,print1(a(n),", "))
A241530
a(n) = binomial(n,floor(n/2))*binomial(n+1,floor(n/2+1/2))*(1+floor(n/2))/(1+2*floor(n/2)).
Original entry on oeis.org
1, 2, 4, 12, 36, 120, 400, 1400, 4900, 17640, 63504, 232848, 853776, 3171168, 11778624, 44169840, 165636900, 625739400, 2363904400, 8982836720, 34134779536, 130332794592, 497634306624, 1907598175392, 7312459672336, 28124844893600, 108172480360000
Offset: 0
-
A241530 := n -> binomial(n,iquo(n,2))*binomial(n+1,iquo(n+1,2))
*(1+iquo(n,2))/(1+2*iquo(n,2)); seq(A241530(n), n=0..26);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 2^n,
((8*n-4)*a(n-1)+16*(n-1)*(n-2)*a(n-2))/(n*(n+1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 10 2016
-
CoefficientList[Series[(-EllipticE[16 x^2] + (1 + 4 x) EllipticK[16 x^2])/(2Pi x), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 15 2016 *)
Table[Binomial[n, #] Binomial[n + 1, Floor[(n + 1)/2]] (1 + #)/(1 + 2 #) &@ Floor[n/2], {n, 0, 26}] (* Michael De Vlieger, Aug 15 2016 *)
A287317
Number of 5-dimensional cubic lattice walks that start and end at origin after 2n steps, free to pass through origin at intermediate stages.
Original entry on oeis.org
1, 10, 270, 10900, 551950, 32232060, 2070891900, 142317232200, 10277494548750, 770878551371500, 59577647564312020, 4717432065143561400, 381091087190569291900, 31308955091335405435000, 2609450031306515140215000, 220199552765301571338488400
Offset: 0
-
A287317_list := proc(len) series(BesselI(0, 2*sqrt(x))^5, x, len);
seq((2*i)!*coeff(%, x, i), i=0..len-1) end: A287317_list(16);
-
Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^5, {x, 0, n}] (2 n) !, {n, 0, 15}]
Table[Binomial[2n,n]^2 Sum[(Binomial[n,j]^4/Binomial[2n,2j]) HypergeometricPFQ[{-j,-j,-j}, {1,1/2-j}, 1/4], {j,0,n}], {n,0,15}]
Table[Sum[(2 n)!/(i! j! k! l! (n-i-j-k-l)!)^2, {i,0,n}, {j,0,n-i}, {k,0,n-i-j}, {l,0,n-i-j-k}], {n,0,30}] (* Shel Kaphan, Jan 24 2023 *)
Moved original definition to formula section and reworded definition descriptively similar to sequence
A039699, by
Dave R.M. Langers, Oct 12 2022
A318417
Scaled g.f. T(u) = Sum_{n>=0} a(n)*(3*u/48)^n satisfies 3*(2*u-1)*T + d/du(4*u*(2*u-1)*(u-1)*T') = 0, and a(0)=1; sequence gives a(n).
Original entry on oeis.org
1, 12, 228, 5040, 121380, 3093552, 82047504, 2240162496, 62508328740, 1773580002480, 50988042273168, 1481392081181376, 43413834762798864, 1281498837550545600, 38059165854011995200, 1136249610240102992640, 34076899109906247654180, 1026061759878805529676720
Offset: 0
Singular Points of u=x^2+y^2-(1/2)*(x^4+y^4).
u (x,y) type
=============================================
0 (0,0) circular
1/2 (0,+/-1) (+/-1,0) hyperbolic
1 +/-(1,1) +/-(1,-1) circular
G.f. = 1 + 12*x + 228*x^2 + 5040*x^3 + 121380*x^4 + 3093552*x^5 + 82047504*x^6 + ... - _Michael Somos_, Aug 27 2018
-
RecurrenceTable[{n^2*a[n]-12*(2*n-1)^2*a[n-1] + 128*(2*n-3)*(2*n-1)*a[n-2] == 0, a[0] == 1, a[1] == 12}, a, {n,0,1000}]
PeriodIntegral[n_]:= CoefficientList[Series[1/Sqrt[1-2*x*((z+y)^4+(z-y)^4)], {x,0,n}], {x, y, z}][[#+1,2*#+1,2*#+1]]&/@Range[0,n];
PeriodIntegral[10]
HadamardProduct[n_]:=Times@@Map[CoefficientList[Normal[Series[#,{x,0,n}]],x,n+1]&, {1/Sqrt[1-12*x+32*x^2], 1/Sqrt[1-4*x]}];
HadamardProduct[10]
a[ n_] := Binomial[2 n, n] SeriesCoefficient[ (1 - 12 x + 32 x^2)^(-1/2), {x, 0, n}]; (* Michael Somos, Aug 27 2018 *)
-
{a(n) = if( n<0, 0, binomial(2*n, n) * polcoeff( (1 - 12*x + 32*x^2 + x * O(x^n))^(-1/2), n))}; /* Michael Somos, Aug 27 2018 */
A329066
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*k).
Original entry on oeis.org
1, 4, 1, 36, 12, 1, 400, 588, 20, 1, 4900, 49440, 2100, 28, 1, 63504, 5187980, 423440, 4956, 36, 1, 853776, 597027312, 117234740, 1751680, 9540, 44, 1, 11778624, 71962945824, 36938855520, 907687900, 5101200, 16236, 52, 1
Offset: 0
Square array begins:
1, 4, 36, 400, 4900, ...
1, 12, 588, 49440, 5187980, ...
1, 20, 2100, 423440, 117234740, ...
1, 28, 4956, 1751680, 907687900, ...
1, 36, 9540, 5101200, 4190017860, ...
-
{T(n, k) = polcoef(polcoef((sum(j=0, 2*n+1, (x^j+1/x^j)*(y^(2*n+1-j)+1/y^(2*n+1-j)))-x^(2*n+1)-1/x^(2*n+1)-y^(2*n+1)-1/y^(2*n+1))^(2*k), 0), 0)}
-
f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
T(n, k) = sum(j=0, 2*k, (-1)^j*binomial(2*k, j)*polcoef(f(n)^j*f(n-1)^(2*k-j), 0)^2)
A078817
Table by antidiagonals giving variants on Catalan sequence: T(n,k)=C(2n,n)*C(2k,k)*(2k+1)/(n+k+1).
Original entry on oeis.org
1, 3, 1, 10, 4, 2, 35, 15, 9, 5, 126, 56, 36, 24, 14, 462, 210, 140, 100, 70, 42, 1716, 792, 540, 400, 300, 216, 132, 6435, 3003, 2079, 1575, 1225, 945, 693, 429, 24310, 11440, 8008, 6160, 4900, 3920, 3080, 2288, 1430, 92378, 43758, 30888, 24024, 19404
Offset: 0
Rows start:
1, 3, 10, 35, 126, 462, 1716,
1, 4, 15, 56, 210, 792, 3003,
2, 9, 36, 140, 540, 2079, 8008,
5, 24, 100, 400, 1575, 6160, 24024,
14, 70, 300, 1225, 4900, 19404, 76440,
42, 216, 945, 3920, 15876, 63504,252252,
132, 693, 3080, 12936, 52920,213444,853776,
etc.
- Ira Gessel, Super ballot numbers, J. Symbolic Computation 14 (1992), 179-194.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- Jovan Mikic, A Note on the Gessel Numbers, arXiv:2203.12931 [math.CO], 2022.
Essentially a reflected version of
A033820.
-
A078817 := proc(n,k)
binomial(2*n,n)*binomial(2*k,k)*(2*k+1)/(n+k+1) ;
end proc: # R. J. Mathar, Dec 06 2018
A254408
a(n) = 2*n^2*binomial(2*n,n)^2, a closed form for a double binomial sum involving absolute values.
Original entry on oeis.org
0, 8, 288, 7200, 156800, 3175200, 61471872, 1154305152, 21201523200, 382952512800, 6826955907200, 120427502203008, 2105988385632768, 36562298361680000, 630861905459520000, 10827650254927680000, 184984389244186675200, 3147624998233113895200, 53368036302222346320000
Offset: 0
-
[(4*Binomial(n+1,2)*Catalan(n))^2/2: n in [0..30]]; // G. C. Greubel, Mar 31 2021
-
A254408:= n-> 2*( n*binomial(2*n, n) )^2; seq(A254408(n), n=0..30); # G. C. Greubel, Mar 31 2021
-
a[n_] := 2*n^2*Binomial[2*n, n]^2; Table[a[n], {n, 0, 20}]
-
a(n) = 2*n^2*binomial(2*n,n)^2 \\ Charles R Greathouse IV, May 10 2016
-
[(4*binomial(n+1,2)*catalan_number(n))^2/2 for n in (0..30)] # G. C. Greubel, Mar 31 2021
A268148
A double binomial sum involving absolute values.
Original entry on oeis.org
0, 8, 768, 30720, 917504, 23592960, 553648128, 12213813248, 257698037760, 5257039970304, 104453604638720, 2031897488130048, 38843546786070528, 731834939447705600, 13618885273168379904, 250760427251989217280, 4574792530279968800768, 82788987402808467652608
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..800
- Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, Some binomial sums involving absolute values, arXiv:1411.1477v2 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (48,-768,4096).
-
a(n) = sum(k=-n,n, sum(l=-n,n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^2));
-
concat(0, Vec(8*x*(1+48*x)/(1-16*x)^3 + O(x^20))) \\ Colin Barker, Feb 11 2016
A329024
Constant term in the expansion of ((x^3 + x + 1/x + 1/x^3)*(y^3 + y + 1/y + 1/y^3) - (x + 1/x)*(y + 1/y))^(2*n).
Original entry on oeis.org
1, 12, 588, 49440, 5187980, 597027312, 71962945824, 8923789535232, 1128795397492620, 144940851928720848, 18832163401980525168, 2470451402766989534256, 326667449725835512275488, 43485599433527022301377600, 5821983056232777427055717760
Offset: 0
-
{a(n) = polcoef(polcoef(((x^3+x+1/x+1/x^3)*(y^3+y+1/y+1/y^3)-(x+1/x)*(y+1/y))^(2*n), 0), 0)}
-
{a(n) = polcoef(polcoef((sum(k=0, 3, (x^k+1/x^k)*(y^(3-k)+1/y^(3-k)))-x^3-1/x^3-y^3-1/y^3)^(2*n), 0), 0)}
-
f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
a(n) = sum(k=0, 2*n, (-1)^k*binomial(2*n, k)*polcoef(f(1)^k*f(0)^(2*n-k), 0)^2)
Comments