cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 129 results. Next

A186414 a(n) = binomial(2n,n)^3/(n+1)^2.

Original entry on oeis.org

1, 2, 24, 500, 13720, 444528, 16099776, 631628712, 26317863000, 1149330319280, 52120705189696, 2437827529099872, 117006104720150464, 5740095404246000000, 286939169121965760000, 14579498741074214418000
Offset: 0

Views

Author

Emanuele Munarini, Feb 21 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(2*n,n)^3/(n+1)^2: n in [0..50]]; // Vincenzo Librandi, Mar 27 2011
  • Mathematica
    Table[Binomial[2n, n]^3/(n + 1)^2, {n, 0, 20}]
  • Maxima
    makelist(binomial(2*n,n)^3/(n+1)^2,n,0,40);
    

Formula

G.f.: 3F2({1/2, 1/2, 1/2}, {2, 2}, 64x), where 3F2 is a hypergeometric function.

A224734 G.f.: exp( Sum_{n>=1} binomial(2*n,n)^2 * x^n/n ).

Original entry on oeis.org

1, 4, 26, 216, 2075, 21916, 247326, 2930216, 36028117, 456089076, 5910983050, 78100285784, 1048696065394, 14275198859304, 196610207633100, 2735542102308752, 38400942393884068, 543307627503591440, 7740605626606127512, 110970838624540461472, 1599834676405793089013
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2013

Keywords

Comments

The o.g.f. A(x) is the fourth power of the o.g.f. of A158266. - Peter Bala, Jun 04 2015

Examples

			G.f.: A(x) = 1 + 4*x + 26*x^2 + 216*x^3 + 2075*x^4 + 21916*x^5 + 247326*x^6 +...
where
log(A(x)) = 2^2*x + 6^2*x^2/2 + 20^2*x^3/3 + 70^2*x^4/4 + 252^2*x^5/5 + 924^2*x^6/6 + 3432^2*x^7/7 + 12870^2*x^8/8 +...+ A000984(n)^2*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[4*x*HypergeometricPFQ[{1, 1, 3/2, 3/2}, {2, 2, 2}, 16*x]], {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 27 2025 *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,binomial(2*k,k)^2*x^k/k)+x*O(x^n)),n)}
    for(n=0,20,print1(a(n),", "))

Formula

Logarithmic derivative yields A002894.
a(n) ~ c * 16^n / n^2, where c = 0.4942922... - Vaclav Kotesovec, Mar 27 2025

A241530 a(n) = binomial(n,floor(n/2))*binomial(n+1,floor(n/2+1/2))*(1+floor(n/2))/(1+2*floor(n/2)).

Original entry on oeis.org

1, 2, 4, 12, 36, 120, 400, 1400, 4900, 17640, 63504, 232848, 853776, 3171168, 11778624, 44169840, 165636900, 625739400, 2363904400, 8982836720, 34134779536, 130332794592, 497634306624, 1907598175392, 7312459672336, 28124844893600, 108172480360000
Offset: 0

Views

Author

Peter Luschny, Apr 25 2014

Keywords

Crossrefs

Row n=3 of A275784.

Programs

  • Maple
    A241530 := n -> binomial(n,iquo(n,2))*binomial(n+1,iquo(n+1,2))
    *(1+iquo(n,2))/(1+2*iquo(n,2)); seq(A241530(n), n=0..26);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 2^n,
         ((8*n-4)*a(n-1)+16*(n-1)*(n-2)*a(n-2))/(n*(n+1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 10 2016
  • Mathematica
    CoefficientList[Series[(-EllipticE[16 x^2] + (1 + 4 x) EllipticK[16 x^2])/(2Pi x), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 15 2016 *)
    Table[Binomial[n, #] Binomial[n + 1, Floor[(n + 1)/2]] (1 + #)/(1 + 2 #) &@ Floor[n/2], {n, 0, 26}] (* Michael De Vlieger, Aug 15 2016 *)

Formula

a(n) = ((8*n-4)*a(n-1)+16*(n-1)*(n-2)*a(n-2))/(n*(n+1)) for n>=2, a(n) = 2^n for n<2. - Alois P. Heinz, Apr 25 2014
G.f.: ((1+4*x)*K(4*x) - E(4*x))/(2*Pi*x), where K and E are the complete elliptic integrals of the first and second kind, respectively, with modulus k = 4*x. - Benedict W. J. Irwin, Aug 15 2016
From Wolfdieter Lang, Sep 06 2016 (Start):
The preceding g.f. can be rewritten as ((1+4*x)*F(1/2,1/2;1;(4*x)^2) -
F(-1/2,1/2;1;(4*x)^2))/(4*x), where F is the hypergyometric function F(a,b;c;z).
This leads to the bisection a(2*k) = ((2*k)!)^2/k!^4 = A002894(k) and a(2*k+1) = 2*(2*k)!*(2*k+1)!/((k+1)*k!^4) = 2*A000894(k), for k >= 0.
(End)

A287317 Number of 5-dimensional cubic lattice walks that start and end at origin after 2n steps, free to pass through origin at intermediate stages.

Original entry on oeis.org

1, 10, 270, 10900, 551950, 32232060, 2070891900, 142317232200, 10277494548750, 770878551371500, 59577647564312020, 4717432065143561400, 381091087190569291900, 31308955091335405435000, 2609450031306515140215000, 220199552765301571338488400
Offset: 0

Views

Author

Peter Luschny, May 23 2017

Keywords

Crossrefs

Case k=5 of A287318.
1-4 dimensional analogs are A000984, A002894, A002896, A039699.

Programs

  • Maple
    A287317_list := proc(len) series(BesselI(0, 2*sqrt(x))^5, x, len);
    seq((2*i)!*coeff(%, x, i), i=0..len-1) end: A287317_list(16);
  • Mathematica
    Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^5, {x, 0, n}] (2 n) !, {n, 0, 15}]
    Table[Binomial[2n,n]^2 Sum[(Binomial[n,j]^4/Binomial[2n,2j]) HypergeometricPFQ[{-j,-j,-j}, {1,1/2-j}, 1/4], {j,0,n}], {n,0,15}]
    Table[Sum[(2 n)!/(i! j! k! l! (n-i-j-k-l)!)^2, {i,0,n}, {j,0,n-i}, {k,0,n-i-j}, {l,0,n-i-j-k}], {n,0,30}] (* Shel Kaphan, Jan 24 2023 *)

Formula

a(n) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^5.
a(n) = binomial(2*n,n)*A169714(n).
a(n) ~ 2^(2*n) * 5^(2*n + 5/2) / (16 * Pi^(5/2) * n^(5/2)). - Vaclav Kotesovec, Nov 13 2017
a(n) = Sum_{i+j+k+l+m=n, 0<=i,j,k,l,m<=n} multinomial(2n, [i,i,j,j,k,k,l,l,m,m]). - Shel Kaphan, Jan 24 2023

Extensions

Moved original definition to formula section and reworded definition descriptively similar to sequence A039699, by Dave R.M. Langers, Oct 12 2022

A318417 Scaled g.f. T(u) = Sum_{n>=0} a(n)*(3*u/48)^n satisfies 3*(2*u-1)*T + d/du(4*u*(2*u-1)*(u-1)*T') = 0, and a(0)=1; sequence gives a(n).

Original entry on oeis.org

1, 12, 228, 5040, 121380, 3093552, 82047504, 2240162496, 62508328740, 1773580002480, 50988042273168, 1481392081181376, 43413834762798864, 1281498837550545600, 38059165854011995200, 1136249610240102992640, 34076899109906247654180, 1026061759878805529676720
Offset: 0

Views

Author

Bradley Klee, Aug 26 2018

Keywords

Comments

The defining differential equation determines the period function T(u) along a square-symmetric Hamiltonian family of algebraic plane curves, u=2*H=x^2+y^2-(1/2)*(x^4+y^4). The separatrix with u=1/2 is a product of two congruent ellipses. Transformation u->1-u leaves T(u) invariant.

Examples

			Singular Points of u=x^2+y^2-(1/2)*(x^4+y^4).
   u             (x,y)              type
=============================================
   0             (0,0)            circular
  1/2      (0,+/-1) (+/-1,0)     hyperbolic
   1       +/-(1,1) +/-(1,-1)     circular
G.f. = 1 + 12*x + 228*x^2 + 5040*x^3 + 121380*x^4 + 3093552*x^5 + 82047504*x^6 + ... - _Michael Somos_, Aug 27 2018
		

Crossrefs

Factors: A000984, A098410. Quartic Periods: A113424, A002894, A318245.

Programs

  • Mathematica
    RecurrenceTable[{n^2*a[n]-12*(2*n-1)^2*a[n-1] + 128*(2*n-3)*(2*n-1)*a[n-2] == 0, a[0] == 1, a[1] == 12}, a, {n,0,1000}]
    PeriodIntegral[n_]:= CoefficientList[Series[1/Sqrt[1-2*x*((z+y)^4+(z-y)^4)], {x,0,n}], {x, y, z}][[#+1,2*#+1,2*#+1]]&/@Range[0,n];
    PeriodIntegral[10]
    HadamardProduct[n_]:=Times@@Map[CoefficientList[Normal[Series[#,{x,0,n}]],x,n+1]&, {1/Sqrt[1-12*x+32*x^2], 1/Sqrt[1-4*x]}];
    HadamardProduct[10]
    a[ n_] := Binomial[2 n, n] SeriesCoefficient[ (1 - 12 x + 32 x^2)^(-1/2), {x, 0, n}]; (* Michael Somos, Aug 27 2018 *)
  • PARI
    {a(n) = if( n<0, 0, binomial(2*n, n) * polcoeff( (1 - 12*x + 32*x^2 + x * O(x^n))^(-1/2), n))}; /* Michael Somos, Aug 27 2018 */

Formula

Define t(u,z) = 1/sqrt(1-2*u*(cos(z)^4+sin(z)^4)), then certify that:
3*(2*u-1)*t + d/du(4*u*(2*u-1)*(u-1)*dt/du) = d/dz((1/4)*sin(4*z)*t^3).
G.f.: G(x) = T(48*x/3), T(u) = 1/(2*Pi)*Integral_{z=0..2*Pi} t(u)*dz.
n^2*a(n) - 12*(2*n-1)^2*a(n-1) + 128*(2*n-3)*(2*n-1)*a(n-2) = 0.
a(n) = A000984(n)*A098410(n).
0 = +a(n)*(+a(n+1)*(+134217728*a(n+2) -25165824*a(n+3) +819200*a(n+4)) +a(n+2)*(-6291456*a(n+2) +1998848*a(n+3) -78336*a(n+4)) +a(n+3)*(-29184*a(n+3) +1472*a(n+4))) +a(n+1)*(+a(n+1)*(-6291456*a(n+2) +1179648*a(n+3) -38400*a(n+4)) +a(n+2)*(+327680*a(n+2) -110592*a(n+3) +4448*a(n+4)) +a(n+3)*(+1728*a(n+3) -90*a(n+4))) +a(n+2)*(+a(n+2)*(-1536*a(n+2) +800*a(n+3) -36*a(n+4)) +a(n+3)*(-18*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Aug 27 2018
G.f.: hypergeom([1/2, 1/2],[1],16*x/(32*x-1))/sqrt(1-32*x). - Mark van Hoeij, Dec 13 2024

A329066 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*k).

Original entry on oeis.org

1, 4, 1, 36, 12, 1, 400, 588, 20, 1, 4900, 49440, 2100, 28, 1, 63504, 5187980, 423440, 4956, 36, 1, 853776, 597027312, 117234740, 1751680, 9540, 44, 1, 11778624, 71962945824, 36938855520, 907687900, 5101200, 16236, 52, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2019

Keywords

Comments

T(n,k) is the number of (2*k)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n+1).
T(n,k) is the constant term in the expansion of (Sum_{j=0..2*n+1} (x^j + 1/x^j)*(y^(2*n+1-j) + 1/y^(2*n+1-j)) - x^(2*n+1) - 1/x^(2*n+1) - y^(2*n+1) - 1/y^(2*n+1))^(2*k).

Examples

			Square array begins:
   1,  4,   36,     400,       4900, ...
   1, 12,  588,   49440,    5187980, ...
   1, 20, 2100,  423440,  117234740, ...
   1, 28, 4956, 1751680,  907687900, ...
   1, 36, 9540, 5101200, 4190017860, ...
		

Crossrefs

Columns k=0-1 give A000012, A017113.
Rows n=0-2 give A002894, A329024, A329067.
Main diagonal gives A342964.

Programs

  • PARI
    {T(n, k) = polcoef(polcoef((sum(j=0, 2*n+1, (x^j+1/x^j)*(y^(2*n+1-j)+1/y^(2*n+1-j)))-x^(2*n+1)-1/x^(2*n+1)-y^(2*n+1)-1/y^(2*n+1))^(2*k), 0), 0)}
    
  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    T(n, k) = sum(j=0, 2*k, (-1)^j*binomial(2*k, j)*polcoef(f(n)^j*f(n-1)^(2*k-j), 0)^2)

Formula

See the second code written in PARI.

A078817 Table by antidiagonals giving variants on Catalan sequence: T(n,k)=C(2n,n)*C(2k,k)*(2k+1)/(n+k+1).

Original entry on oeis.org

1, 3, 1, 10, 4, 2, 35, 15, 9, 5, 126, 56, 36, 24, 14, 462, 210, 140, 100, 70, 42, 1716, 792, 540, 400, 300, 216, 132, 6435, 3003, 2079, 1575, 1225, 945, 693, 429, 24310, 11440, 8008, 6160, 4900, 3920, 3080, 2288, 1430, 92378, 43758, 30888, 24024, 19404
Offset: 0

Views

Author

Henry Bottomley, Dec 07 2002

Keywords

Examples

			Rows start:
     1,     3,    10,    35,   126,   462,  1716,
     1,     4,    15,    56,   210,   792,  3003,
     2,     9,    36,   140,   540,  2079,  8008,
     5,    24,   100,   400,  1575,  6160, 24024,
    14,    70,   300,  1225,  4900, 19404, 76440,
    42,   216,   945,  3920, 15876, 63504,252252,
   132,   693,  3080, 12936, 52920,213444,853776,
etc.
		

Crossrefs

Columns include A000108 (catalan), A038629, A078818 and A078819. Rows include A001700, A001791, A007946 and A078820. Diagonals include A002894 and A060150.
Essentially a reflected version of A033820.

Programs

  • Maple
    A078817 := proc(n,k)
        binomial(2*n,n)*binomial(2*k,k)*(2*k+1)/(n+k+1) ;
    end proc: # R. J. Mathar, Dec 06 2018

Formula

T(n, k) = A000984(n)*A002457(k)/(n+k+1) = T(k, n)*(2k+1)/(2n+1).

A254408 a(n) = 2*n^2*binomial(2*n,n)^2, a closed form for a double binomial sum involving absolute values.

Original entry on oeis.org

0, 8, 288, 7200, 156800, 3175200, 61471872, 1154305152, 21201523200, 382952512800, 6826955907200, 120427502203008, 2105988385632768, 36562298361680000, 630861905459520000, 10827650254927680000, 184984389244186675200, 3147624998233113895200, 53368036302222346320000
Offset: 0

Views

Author

Jean-François Alcover, Jan 30 2015

Keywords

Crossrefs

Programs

  • Magma
    [(4*Binomial(n+1,2)*Catalan(n))^2/2: n in [0..30]]; // G. C. Greubel, Mar 31 2021
    
  • Maple
    A254408:= n-> 2*( n*binomial(2*n, n) )^2; seq(A254408(n), n=0..30); # G. C. Greubel, Mar 31 2021
  • Mathematica
    a[n_] := 2*n^2*Binomial[2*n, n]^2; Table[a[n], {n, 0, 20}]
  • PARI
    a(n) = 2*n^2*binomial(2*n,n)^2 \\ Charles R Greathouse IV, May 10 2016
    
  • Sage
    [(4*binomial(n+1,2)*catalan_number(n))^2/2 for n in (0..30)] # G. C. Greubel, Mar 31 2021

Formula

a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)).
From G. C. Greubel, Mar 31 2021: (Start)
a(n) = 8 * binomial(n+1, 2)^2 * C(n)^2, where C(n) = A000108(n) (Catalan numbers).
G.f.: 8*x*Hypergeometric2F1([3/2, 3/2], [1], 16*x) = (16/Pi)*(x/(1-16*x)^2)*( 2*E(16*x) - (1-16*x)*K(16*x) ), where E(x) and K(x) are elliptic functions. (End)
D-finite with recurrence (n-1)^2*a(n) + (n^2-52*n+64)*a(n-1) - 68*(2*n -3)^2*a(n-2) = 0. - R. J. Mathar, Feb 27 2023
a(n) ~ 2^(4*n+1) * n / Pi. - Amiram Eldar, Sep 04 2025

A268148 A double binomial sum involving absolute values.

Original entry on oeis.org

0, 8, 768, 30720, 917504, 23592960, 553648128, 12213813248, 257698037760, 5257039970304, 104453604638720, 2031897488130048, 38843546786070528, 731834939447705600, 13618885273168379904, 250760427251989217280, 4574792530279968800768, 82788987402808467652608
Offset: 0

Views

Author

Richard P. Brent, Jan 27 2016

Keywords

Comments

A fast algorithm follows from Theorem 5 of Brent et al. article.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=-n,n, sum(l=-n,n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^2));
    
  • PARI
    concat(0, Vec(8*x*(1+48*x)/(1-16*x)^3 + O(x^20))) \\ Colin Barker, Feb 11 2016

Formula

a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^2).
From Colin Barker, Feb 11 2016: (Start)
a(n) = 2^(4*n-1)*n*(2*n-1).
a(n) = 48*a(n-1)-768*a(n-2)+4096*a(n-3) for n>2.
G.f.: 8*x*(1+48*x) / (1-16*x)^3.
(End)

A329024 Constant term in the expansion of ((x^3 + x + 1/x + 1/x^3)*(y^3 + y + 1/y + 1/y^3) - (x + 1/x)*(y + 1/y))^(2*n).

Original entry on oeis.org

1, 12, 588, 49440, 5187980, 597027312, 71962945824, 8923789535232, 1128795397492620, 144940851928720848, 18832163401980525168, 2470451402766989534256, 326667449725835512275488, 43485599433527022301377600, 5821983056232777427055717760
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2019

Keywords

Comments

Also number of (2*n)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 3).
*
|
*-- --*
| | |
*-- -- -- --*
| | | | |
*-- -- --P-- -- --*
| | | | |
*-- -- -- --*
| | |
*-- --*
|
*
Point P move to any position of * in the next step.

Crossrefs

Row n=1 of A329066.

Programs

  • PARI
    {a(n) = polcoef(polcoef(((x^3+x+1/x+1/x^3)*(y^3+y+1/y+1/y^3)-(x+1/x)*(y+1/y))^(2*n), 0), 0)}
    
  • PARI
    {a(n) = polcoef(polcoef((sum(k=0, 3, (x^k+1/x^k)*(y^(3-k)+1/y^(3-k)))-x^3-1/x^3-y^3-1/y^3)^(2*n), 0), 0)}
    
  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    a(n) = sum(k=0, 2*n, (-1)^k*binomial(2*n, k)*polcoef(f(1)^k*f(0)^(2*n-k), 0)^2)

Formula

Conjecture: a(n) ~ 3 * 144^n / (19*Pi*n). - Vaclav Kotesovec, Nov 04 2019
Previous Showing 51-60 of 129 results. Next