cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 86 results. Next

A151913 Numbers n for which (8+n!)/8 is prime.

Original entry on oeis.org

7, 9, 10, 12, 14, 20, 23, 24, 29, 44, 108, 2049, 3072, 4862, 8807, 15089
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

a(17) > 25000. - Robert Price, Dec 20 2016

Crossrefs

For primes of the form (8+k!!)/8 see A139066.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 8)/8], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    is(n)=n>6 && isprime((8+n!)/8) \\ Charles R Greathouse IV, Apr 29 2016

Extensions

Definition corrected Feb 24 2010
More terms from Serge Batalov, Feb 18 2015
a(15)-a(16) from Robert Price, Dec 20 2016

A055490 Factorial primes: primes of the form n! - 1.

Original entry on oeis.org

5, 23, 719, 5039, 479001599, 87178291199, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999
Offset: 1

Views

Author

Labos Elemer, Jun 28 2000

Keywords

Comments

For further information see A002982, which is the main entry.
Also primes of the form 1*1! + 2*2! + ... + n*n!. - Jonathan Vos Post, Jul 21 2006
Prime numbers that are the difference of two factorial numbers. - Juri-Stepan Gerasimov, Nov 08 2010

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 118.

Crossrefs

Programs

  • Mathematica
    Select[Range[40]!-1,PrimeQ] (* Harvey P. Dale, Aug 16 2012 *)

Formula

p = n!-1 for some n given in A002982.

Extensions

Edited by Jon E. Schoenfield, Jan 09 2015

A200906 Numbers n such that cyclotomic polynomial value Phi(5,n!) is prime.

Original entry on oeis.org

0, 1, 2, 4, 5, 21, 44, 64, 244, 268, 2415
Offset: 1

Views

Author

Serge Batalov, Nov 23 2011

Keywords

Comments

2415 corresponds to a probable prime. - Serge Batalov, Nov 24 2011
a(12) > 15000. - Robert Price, Jun 20 2015

Examples

			5 is in the sequence because Phi(5,5!) = ((5!)^5-1)/(5!-1)= 209102521 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[Cyclotomic[5, n!]], Print[n]], {n, 0, 600}]
  • PARI
    for(n=0,600,x=n!;if(isprime(eval(polcyclo(5))),print(n)))

A335407 Number of anti-run permutations of the prime indices of n!.

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 3, 54, 0, 30, 105, 6090, 1512, 133056, 816480, 127209600, 0, 10090080, 562161600, 69864795000, 49989139200, 29593652088000, 382147120555200, 41810689605484800, 4359985823793600, 3025062801079038720, 49052072750637116160, 25835971971637227375360
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

An anti-run is a sequence with no adjacent equal parts.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Conjecture: Only vanishes at n = 4 and n = 8.
a(16) = 0. Proof: 16! = 2^15 * m where bigomega(m) = A001222(m) = 13. We can't separate 15 1's with 13 other numbers. - David A. Corneth, Jul 04 2020

Examples

			The a(0) = 1 through a(6) = 3 anti-run permutations:
  ()  ()  (1)  (1,2)  .  (1,2,1,3,1)  (1,2,1,2,1,3,1)
               (2,1)     (1,3,1,2,1)  (1,2,1,3,1,2,1)
                                      (1,3,1,2,1,2,1)
		

Crossrefs

The version for Mersenne numbers is A335432.
Anti-run compositions are A003242.
Anti-run patterns are counted by A005649.
Permutations of prime indices are A008480.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Strict permutations of prime indices are A335489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n!]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,10}]
  • PARI
    \\ See A335452 for count.
    a(n)={count(factor(n!)[,2])} \\ Andrew Howroyd, Feb 03 2021

Formula

a(n) = A335452(A000142(n)). - Andrew Howroyd, Feb 03 2021

Extensions

Terms a(14) and beyond from Andrew Howroyd, Feb 03 2021

A076680 Numbers k such that 4*k! + 1 is prime.

Original entry on oeis.org

0, 1, 4, 7, 8, 9, 13, 16, 28, 54, 86, 129, 190, 351, 466, 697, 938, 1510, 2748, 2878, 3396, 4057, 4384, 5534, 7069, 10364
Offset: 1

Views

Author

Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 25 2002

Keywords

Comments

a(25) > 6311. - Jinyuan Wang, Feb 06 2020

Examples

			k = 7 is a term because 4*7! + 1 = 20161 is prime.
		

Crossrefs

Cf. m*n!-1 is a prime: A076133, A076134, A099350, A099351, A180627-A180631.
Cf. m*n!+1 is a prime: A051915, A076679-A076683, A178488, A180626, A126896.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205.

Programs

  • Mathematica
    Select[Range[5000],PrimeQ[4#!+1]&] (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    is(k) = ispseudoprime(4*k!+1); \\ Jinyuan Wang, Feb 06 2020

Extensions

Corrected (added missed terms 2748, 2878) by Serge Batalov, Feb 24 2015
a(24) from Jinyuan Wang, Feb 06 2020
a(25)-a(26) from Michael S. Branicky, Jul 04 2024

A076133 Numbers k such that 2*k! - 1 is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 14, 15, 17, 22, 28, 91, 253, 257, 298, 659, 832, 866, 1849, 2495, 2716, 2773, 2831, 3364, 5264, 7429, 28539, 32123, 37868, 65591, 113920
Offset: 1

Views

Author

Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 30 2002

Keywords

Comments

a(32) > 116000. - Serge Batalov, Jun 06 2025

Examples

			k = 5 is here because 2*5! - 1 = 239 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..600] | IsPrime(2*Factorial(n)-1)]; // Vincenzo Librandi, Feb 20 2015
    
  • Mathematica
    Select[Range[8000], PrimeQ[2 #! - 1] &] (* Vincenzo Librandi, Feb 20 2015 *)
  • PARI
    is(k) = ispseudoprime(2*k!-1); \\ Jinyuan Wang, Feb 04 2020

Extensions

a(24)-a(29) from Serge Batalov, Feb 18 2015
a(30) from Serge Batalov, Jun 03 2025
a(31) from Serge Batalov, Jun 06 2025

A076134 Numbers k such that 3*k! - 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 9, 12, 17, 26, 76, 379, 438, 1695, 6709, 13313, 18504, 19021, 24488, 45552, 49085, 65451
Offset: 1

Views

Author

Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 30 2002

Keywords

Comments

a(23) > 80000. - Serge Batalov, Jun 09 2025

Examples

			k = 5 is here because 3*5! - 1 = 359 is prime.
		

Crossrefs

Programs

  • Maple
    for n from 0 to 1000 do if isprime(3*n! - 1) then print(n) end if end do;
  • Mathematica
    Select[Range[0, 10^3], PrimeQ[3 #! - 1] &] (* Robert Price, May 27 2019 *)
  • PARI
    isok(n) = isprime(3*n! - 1); \\ Michel Marcus, Nov 13 2016
    
  • PFGW
    ABC2 3*$a!+1
    a: from 1 to 1000 // Jinyuan Wang, Feb 04 2020

Extensions

a(15)-a(21) from Roger Karpin, Nov 13 2016
a(22) from Serge Batalov, Jun 08 2025

A099350 Numbers k such that 4*k! - 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 10, 11, 51, 63, 197, 313, 579, 1264, 2276, 2669, 4316, 4382, 4678, 7907, 10843
Offset: 1

Views

Author

Brian Kell, Oct 12 2004

Keywords

Comments

a(19) > 4570. - Jinyuan Wang, Feb 04 2020

Examples

			k = 5 is here because 4*5! - 1 = 479 is prime.
		

Crossrefs

Programs

  • Maple
    for n from 0 to 1000 do if isprime(4*n! - 1) then print(n) end if end do;
  • Mathematica
    For[n = 0, True, n++, If[PrimeQ[4 n! - 1], Print[n]]] (* Jean-François Alcover, Sep 23 2015 *)
  • PARI
    is_A099350(n)=ispseudoprime(n!*4-1) \\ M. F. Hasler, Sep 20 2015

Extensions

a(14) from Alois P. Heinz, Sep 21 2015
a(15)-a(16) from Jean-François Alcover, Sep 23 2015
a(17)-a(18) from Jinyuan Wang, Feb 04 2020
a(19) from Michael S. Branicky, May 16 2023
a(20)-a(21) from Michael S. Branicky, Jul 11 2024

A325618 Numbers m such that there exists an integer partition of m whose reciprocal factorial sum is 1.

Original entry on oeis.org

1, 4, 11, 18, 24, 31, 37, 44, 45, 50, 52, 57, 58, 65, 66, 70, 71, 73, 76, 78, 79, 83, 86, 87, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 107, 108, 109, 110, 112, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
Conjecture: 137 is the greatest integer not in this sequence. - Charlie Neder, May 14 2019

Examples

			The sequence of terms together with an integer partition of each whose reciprocal factorial sum is 1 begins:
   1: (1)
   4: (2,2)
  11: (3,3,3,2)
  18: (3,3,3,3,3,3)
  24: (4,4,4,4,3,3,2)
  31: (4,4,4,4,3,3,3,3,3)
  37: (4,4,4,4,4,4,4,4,3,2)
  44: (4,4,4,4,4,4,4,4,3,3,3,3)
  45: (5,5,5,5,5,4,4,4,3,3,2)
  50: (4,4,4,4,4,4,4,4,4,4,4,4,2)
		

Crossrefs

Extensions

a(11)-a(55) from Charlie Neder, May 14 2019

A001272 Numbers k such that k! - (k-1)! + (k-2)! - (k-3)! + ... - (-1)^k*1! is prime.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 10, 15, 19, 41, 59, 61, 105, 160, 661, 2653, 3069, 3943, 4053, 4998, 8275, 9158, 11164, 43592, 59961
Offset: 1

Views

Author

Keywords

Comments

At present the terms greater than or equal to 2653 are only probable primes.
Živković shows that all terms must be less than p = 3612703, which divides the alternating factorial af(k) for k >= p. - T. D. Noe, Jan 25 2008
Notwithstanding Živković's wording, p = 3612703 also divides the alternating factorial for k = 3612702. [Guy: If there is a value of k such that k + 1 divides af(k), then k + 1 will divide af(m) for all m > k.] Therefore af(3612701), approximately 7.3 * 10^22122513, is the final primality candidate. - Hans Havermann, Jun 17 2013
Next term (if it exists) has k > 100000 (per M. Rodenkirch post). - Eric W. Weisstein, Dec 18 2017

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 160, p. 52, Ellipses, Paris 2008.
  • Martin Gardner, Strong Laws of Small Primes, in The Last Recreations, p. 198 (1997).
  • R. K. Guy, Unsolved Problems in Number Theory, B43.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 97.

Crossrefs

Programs

  • Maple
    with(numtheory); f := proc(n) local i; add((-1)^(n-i)*i!,i=1..n); end; isprime(f(15));
  • Mathematica
    (* This program is not convenient for more than 15 terms *) Reap[For[n = 1, n <= 1000, n++, If[PrimeQ[Sum[(-1)^(n - k) * k!, {k, n}]], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Sep 05 2013 *)
    Position[AlternatingFactorial[Range[200]], ?PrimeQ] // Flatten (* _Eric W. Weisstein, Sep 19 2017 *)

Extensions

661 found independently by Eric W. Weisstein and Rachel Lewis (racheljlewis(AT)hotmail.com); 2653 and 3069 found independently by Chris Nash (nashc(AT)lexmark.com) and Rachel Lewis (racheljlewis(AT)hotmail.com)
3943, 4053, 4998 found by Paul Jobling (paul.jobling(AT)whitecross.com)
8275, 9158 found by team of Rachel Lewis, Paul Jobling and Chris Nash
661! - 660! + 659! - ... was shown to be prime by team of Giovanni La Barbera and others using the Certifix program developed by Marcel Martin, Jul 15 2000 (see link) - Paul Jobling (Paul.Jobling(AT)WhiteCross.com) and Giovanni La Barbera, Aug 02 2000
a(23) = 11164 found by Paul Jobling, Nov 25 2004
Edited by T. D. Noe, Oct 30 2008
Edited by Hans Havermann, Jun 17 2013
a(24) = 43592 from Serge Batalov, Jul 19 2017
a(25) = 59961 from Mark Rodenkirch, Sep 18 2017
Previous Showing 21-30 of 86 results. Next