cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 118 results. Next

A309883 Numbers k such that A003132(k^2) = A003132(k), where A003132(n) is the sum of the squares of the digits of n.

Original entry on oeis.org

0, 1, 10, 35, 100, 152, 350, 377, 452, 539, 709, 1000, 1299, 1398, 1439, 1519, 1520, 1569, 1591, 1679, 1965, 2599, 2838, 3332, 3500, 3598, 3770, 4520, 4586, 4754, 4854, 5390, 5501, 5835, 5857, 6388, 6595, 6735, 6861, 6951, 7090, 7349, 7887, 8395, 9795, 10000, 10056, 10159, 10389, 11055, 11091, 12990, 12999
Offset: 1

Views

Author

Antonio Roldán, Aug 21 2019

Keywords

Comments

If k is in the sequence, then so are k*10^r, r >= 1.

Examples

			377^2 = 142129, A003132(377) = 3^2 + 7^2 + 7^2 = 107, A003132(142129) = 1^2 + 4^2 + 2^2 + 1^2 + 2^2 + 9^2 = 107.
		

Crossrefs

Programs

  • Magma
    [0] cat [k:k in [1..13000]| &+[c^2: c in Intseq(k)] eq &+[c^2: c in Intseq(k^2)]]; // Marius A. Burtea, Aug 24 2019
  • Maple
    filter:= proc(n) local t;
      add(t^2, t = convert(n,base,10)) = add(t^2, t = convert(n^2,base,10))
    end proc:
    select(filter, [$0..20000]); # Robert Israel, Apr 30 2023
  • Mathematica
    digSum[n_] := Total[IntegerDigits[n]^2]; Select[Range[0, 13000], digSum[#] == digSum[#^2] &] (* Amiram Eldar, Aug 22 2019 *)
  • PARI
    for(i = 0, 30000, if(norml2(digits(i^2)) == norml2(digits(i)), print1(i, ", ")))
    
  • Python
    def A003132(n):
        s = 0
        while n > 0:
            s, n = s+(n%10)**2, n//10
        return s
    n, a = 0, 0
    while n < 50:
        if A003132(a) == A003132(a*a):
            n = n+1
            print(n,a)
        a = a+1 # A.H.M. Smeets, Aug 23 2019
    

A309884 Numbers k such that A003132(k^3) = A003132(k), where A003132(n) is the sum of the squares of the digits of n.

Original entry on oeis.org

0, 1, 10, 74, 100, 740, 1000, 3488, 7400, 10000, 23658, 30868, 34880, 47508, 48517, 52187, 58947, 59468, 67685, 68058, 74000, 76814, 78368, 78845, 84878, 100000, 108478, 145877, 149217, 163871, 179685, 186884, 188647, 218977, 219878, 236580, 238758, 248967, 278638, 292597, 308680
Offset: 1

Views

Author

Antonio Roldán, Aug 21 2019

Keywords

Comments

If k is in the sequence, then so are k*10^r, with r >= 1.

Examples

			74^3 = 405224, A003132(74) = 7^2 + 4^2 = 65, A003132(405224) = 4^2 + 0^2 + 5^2 + 2^2 + 2^2 + 4^2 = 65.
		

Crossrefs

Programs

  • Magma
    [0] cat [k:k in [1..310000]| &+[c^2: c in Intseq(k)] eq &+[c^2: c in Intseq(k^3)]]; // Marius A. Burtea, Aug 26 2019
  • Mathematica
    digSum[n_] := Total[IntegerDigits[n]^2]; Select[Range[0, 310000], digSum[#] == digSum[#^3] &] (* Amiram Eldar, Aug 22 2019 *)
  • PARI
    for(i = 0, 400000, if(norml2(digits(i^3)) == norml2(digits(i)), print1(i, ", ")))
    

A342958 a(n) is the least prime that starts a string of exactly n primes p_1, p_2, ... p_n where p_{i+1} = p_i-A003132(p_i), but p_n-A003132(p_n) is not prime.

Original entry on oeis.org

2, 13, 547, 10559, 246349, 20020109, 20020163
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 31 2021

Keywords

Comments

No further terms < 10^9.

Examples

			a(3) = 547 because 547, 547-A003132(547) = 457, and 457-A003132(457) = 367 are prime, but 367-A003132(367) = 273 is not prime.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local t, x;
      x:= n - add(t^2, t=convert(n, base, 10));
      if not isprime(x) then 1 else 1+procname(x) fi
    end proc:
    V:= Vector(7): count:= 0: p:= 1:
    while count < 7 do
      p:= nextprime(p); v:= f(p);
      if v <= N and V[v] = 0 then V[v]:= p; count:= count+1 fi
    od:
    convert(V, list);

A342960 Primes p such that p+A003132(p),(p+A003132(p))+A003132(p+A003132(p)), p-A003132(p), and (p-A003132(p))-A003132(p-A003132(p)) are prime.

Original entry on oeis.org

38377, 70957, 106867, 278177, 278393, 380377, 432199, 435763, 526397, 1093159, 2025577, 2761147, 3068119, 3656129, 3672659, 5649079, 6863173, 7366453, 8083937, 9015863, 9346507, 9497353, 14198467, 15099901, 15467423, 15479273, 16020607, 16437427, 17602547, 18804173, 20020019, 20794141, 22866121
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 31 2021

Keywords

Comments

The number of digits of p that are not divisible by 3 is divisible by 3.

Examples

			a(3) = 106867 is a term because 106867, 106867+A003132(106867) = 107053, 107053+A003132(107053) = 107137, 106867-A003132(106867) = 106681, and 106681-A003132(106681) = 106543 are all prime.
		

Crossrefs

Contained in A179549 and A179550.
Cf. A003132.

Programs

  • Maple
    filter:= proc(n) local t,x,d;
      if not isprime(n) then return false fi;
      d:= add(t^2, t=convert(n,base,10));
      x:= n+d;
      if not isprime(x) then return false fi;
      if not isprime(x+add(t^2,t=convert(x,base,10))) then return false fi;
      x:= n-d;
      isprime(x) and isprime(x-add(t^2,t=convert(x,base,10)))
    end proc:
    select(filter, [seq(i,i=3..3*10^7,2)]);

A364682 Number of iterations of the "x -> sum of squares of digits of x" map (A003132) for n to converge to either 0, 1 or the 8-cycle (37,58,89,145,42,20,4,16).

Original entry on oeis.org

1, 1, 2, 6, 1, 5, 10, 6, 6, 5, 2, 3, 6, 3, 7, 4, 1, 6, 4, 5, 1, 6, 7, 4, 2, 4, 3, 7, 4, 3, 6, 3, 4, 5, 5, 6, 9, 1, 3, 6, 2, 7, 1, 5, 5, 8, 5, 4, 7, 5, 5, 4, 4, 6, 8, 6, 3, 5, 1, 3, 10, 2, 3, 9, 5, 3, 8, 3, 3, 6, 6, 6, 7, 2, 4, 5, 3, 3, 5, 4, 6, 4, 4, 3, 7, 2
Offset: 0

Views

Author

Chai Wah Wu, Aug 02 2023

Keywords

Comments

The initial number counts as iteration 1.

Crossrefs

Programs

  • Python
    def A364682(n):
        c = 1
        while n not in {0,1,37,58,89,145,42,20,4,16}:
            n = sum((0, 1, 4, 9, 16, 25, 36, 49, 64, 81)[ord(d)-48] for d in str(n))
            c += 1
        return c

Formula

a(n) <= A193995(n) with equality if and only if n is a Happy number (A007770).
a(n) = 1 if and only if n is in A039943.
a(n) = A099645(n)+1.

A379525 a(1) = 1. For n > 1, if a(n-1) is a novel term, a(n) = A003132(a(n-1)). If a(n-1) has been seen k (>1) times already, a(n) = k*a(n-1).

Original entry on oeis.org

1, 1, 2, 4, 16, 37, 58, 89, 145, 42, 20, 4, 8, 64, 52, 29, 85, 89, 178, 114, 18, 65, 61, 37, 74, 65, 130, 10, 1, 3, 9, 81, 65, 195, 107, 50, 25, 29, 58, 116, 38, 73, 58, 174, 66, 72, 53, 34, 25, 50, 100, 1, 4, 12, 5, 25, 75, 74, 148, 81, 162, 41, 17, 50, 150
Offset: 1

Views

Author

David James Sycamore, Dec 24 2024

Keywords

Comments

2 and 3 appear only once since the only way they can be expressed as the sum of squares is as 2 = 1^2 + 1^2 and 3 = 1^2 + 1^2 + 1^2 (see Example). Maximum number of times prime(k) can appear is A379551(k).
Conjecture: Every positive integer appears in the sequence at least once.

Examples

			a(2) = 1^2 = 1 so a(3) = 2 since 1 has occurred twice. This is the only occasion of a(n) = 2 in the sequence. Because a(3) = 2 is a novel term, a(4) = 2^2 = 4, then a(5) = 4^2 = 16.
a(8) = a(18) = 89, so a(19) = 2*89 = 178.
a(28) = 10, a novel term, so a(29) = 1, the 3rd occurrence of 1, so a(30) = 3 (the only occasion of 3 in the sequence).
		

Crossrefs

Programs

  • Mathematica
    nn = 120; c[_] := 0; a[1] = j = 1;
    Do[If[c[j] == 0,
        k = Total[IntegerDigits[j]^2]; c[j]++,
        k = ++c[j]*j ];
      Set[{a[n], j}, {k, k}], {n, 2, nn}];
    Array[a, nn] (* Michael De Vlieger, Dec 25 2024 *)

A099652 Largest number arising if f[x]=1+A003132(x) function is iterated until steady state reached. Compare with A099648.

Original entry on oeis.org

107, 107, 107, 107, 107, 107, 107, 107, 118, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 118, 107, 107, 107, 107, 107, 118, 107, 107, 107, 107, 107, 107, 35, 53, 107, 107, 107, 107, 107, 107, 107, 107, 107, 53, 107, 107, 146, 107, 107, 107, 53
Offset: 1

Views

Author

Labos Elemer, Nov 12 2004

Keywords

Examples

			n=32: list={32,14,18,66,73,59,107,51,27,54,42,21,6,37,59,107,51,...},
max[list]=a[32]=107>initial-value;
Also:lengths of transient=5,of cycle=0 (see in A099646).
		

Crossrefs

Programs

  • Mathematica
    ed[x_] :=IntegerDigits[x];func[x_] :=Apply[Plus, ed[x]^2]+1; Table[Max[NestList[func, w, 200]], {w, 1, 150}]

A007953 Digital sum (i.e., sum of digits) of n; also called digsum(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Do not confuse with the digital root of n, A010888 (first term that differs is a(19)).
Also the fixed point of the morphism 0 -> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 1 -> {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 2 -> {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, etc. - Robert G. Wilson v, Jul 27 2006
For n < 100 equal to (floor(n/10) + n mod 10) = A076314(n). - Hieronymus Fischer, Jun 17 2007
It appears that a(n) is the position of 10*n in the ordered set of numbers obtained by inserting/placing one digit anywhere in the digits of n (except a zero before 1st digit). For instance, for n=2, the resulting set is (12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92) where 20 is at position 2, so a(2) = 2. - Michel Marcus, Aug 01 2022
Also the total number of beads required to represent n on a Russian abacus (schoty). - P. Christopher Staecker, Mar 31 2023
a(n) / a(2n) <= 5 with equality iff n is in A169964, while a(n) / a(3n) is unbounded, since if n = (10^k + 2)/3, then a(n) = 3*k+1, a(3n) = 3, so a(n) / a(3n) = k + 1/3 -> oo when k->oo (see Diophante link). - Bernard Schott, Apr 29 2023
Also the number of symbols needed to write number n in Egyptian numerals for n < 10^7. - Wojciech Graj, Jul 10 2025

Examples

			a(123) = 1 + 2 + 3 = 6, a(9875) = 9 + 8 + 7 + 5 = 29.
		

Crossrefs

Programs

  • Haskell
    a007953 n | n < 10 = n
              | otherwise = a007953 n' + r where (n',r) = divMod n 10
    -- Reinhard Zumkeller, Nov 04 2011, Mar 19 2011
    
  • Magma
    [ &+Intseq(n): n in [0..87] ];  // Bruno Berselli, May 26 2011
    
  • Maple
    A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: # R. J. Mathar, Mar 17 2011
  • Mathematica
    Table[Sum[DigitCount[n][[i]] * i, {i, 9}], {n, 50}] (* Stefan Steinerberger, Mar 24 2006 *)
    Table[Plus @@ IntegerDigits @ n, {n, 0, 87}] (* or *)
    Nest[Flatten[# /. a_Integer -> Array[a + # &, 10, 0]] &, {0}, 2] (* Robert G. Wilson v, Jul 27 2006 *)
    Total/@IntegerDigits[Range[0,90]] (* Harvey P. Dale, May 10 2016 *)
    DigitSum[Range[0, 100]] (* Requires v. 14 *) (* Paolo Xausa, May 17 2024 *)
  • PARI
    a(n)=if(n<1, 0, if(n%10, a(n-1)+1, a(n/10))) \\ Recursive, very inefficient. A more efficient recursive variant: a(n)=if(n>9, n=divrem(n, 10); n[2]+a(n[1]), n)
    
  • PARI
    a(n, b=10)={my(s=(n=divrem(n, b))[2]); while(n[1]>=b, s+=(n=divrem(n[1], b))[2]); s+n[1]} \\ M. F. Hasler, Mar 22 2011
    
  • PARI
    a(n)=sum(i=1, #n=digits(n), n[i]) \\ Twice as fast. Not so nice but faster:
    
  • PARI
    a(n)=sum(i=1,#n=Vecsmall(Str(n)),n[i])-48*#n \\ M. F. Hasler, May 10 2015
    /* Since PARI 2.7, one can also use: a(n)=vecsum(digits(n)), or better: A007953=sumdigits. [Edited and commented by M. F. Hasler, Nov 09 2018] */
    
  • PARI
    a(n) = sumdigits(n); \\ Altug Alkan, Apr 19 2018
    
  • Python
    def A007953(n):
        return sum(int(d) for d in str(n)) # Chai Wah Wu, Sep 03 2014
    
  • Python
    def a(n): return sum(map(int, str(n))) # Michael S. Branicky, May 22 2021
    
  • Scala
    (0 to 99).map(.toString.map(.toInt - 48).sum) // Alonso del Arte, Sep 15 2019
    
  • Smalltalk
    "Recursive version for general bases. Set base = 10 for this sequence."
    digitalSum: base
    | s |
    base = 1 ifTrue: [^self].
    (s := self // base) > 0
      ifTrue: [^(s digitalSum: base) + self - (s * base)]
      ifFalse: [^self]
    "by Hieronymus Fischer, Mar 24 2014"
    
  • Swift
    A007953(n): String(n).compactMap{$0.wholeNumberValue}.reduce(0, +) // Egor Khmara, Jun 15 2021

Formula

a(A051885(n)) = n.
a(n) <= 9(log_10(n)+1). - Stefan Steinerberger, Mar 24 2006
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(10n+i) = a(n) + i for 0 <= i <= 9.
a(n) = n - 9*(Sum_{k > 0} floor(n/10^k)) = n - 9*A054899(n). (End)
From Hieronymus Fischer, Jun 17 2007: (Start)
G.f. g(x) = Sum_{k > 0, (x^k - x^(k+10^k) - 9x^(10^k))/(1-x^(10^k))}/(1-x).
a(n) = n - 9*Sum_{10 <= k <= n} Sum_{j|k, j >= 10} floor(log_10(j)) - floor(log_10(j-1)). (End)
From Hieronymus Fischer, Jun 25 2007: (Start)
The g.f. can be expressed in terms of a Lambert series, in that g(x) = (x/(1-x) - 9*L[b(k)](x))/(1-x) where L[b(k)](x) = sum{k >= 0, b(k)*x^k/(1-x^k)} is a Lambert series with b(k) = 1, if k > 1 is a power of 10, else b(k) = 0.
G.f.: g(x) = (Sum_{k > 0} (1 - 9*c(k))*x^k)/(1-x), where c(k) = Sum_{j > 1, j|k} floor(log_10(j)) - floor(log_10(j-1)).
a(n) = n - 9*Sum_{0 < k <= floor(log_10(n))} a(floor(n/10^k))*10^(k-1). (End)
From Hieronymus Fischer, Oct 06 2007: (Start)
a(n) <= 9*(1 + floor(log_10(n))), equality holds for n = 10^m - 1, m > 0.
lim sup (a(n) - 9*log_10(n)) = 0 for n -> oo.
lim inf (a(n+1) - a(n) + 9*log_10(n)) = 1 for n -> oo. (End)
a(n) = A138530(n, 10) for n > 9. - Reinhard Zumkeller, Mar 26 2008
a(A058369(n)) = A004159(A058369(n)); a(A000290(n)) = A004159(n). - Reinhard Zumkeller, Apr 25 2009
a(n) mod 2 = A179081(n). - Reinhard Zumkeller, Jun 28 2010
a(n) <= 9*log_10(n+1). - Vladimir Shevelev, Jun 01 2011
a(n) = a(n-1) + a(n-10) - a(n-11), for n < 100. - Alexander R. Povolotsky, Oct 09 2011
a(n) = Sum_{k >= 0} A031298(n, k). - Philippe Deléham, Oct 21 2011
a(n) = a(n mod b^k) + a(floor(n/b^k)), for all k >= 0. - Hieronymus Fischer, Mar 24 2014
Sum_{n>=1} a(n)/(n*(n+1)) = 10*log(10)/9 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

Extensions

More terms from Hieronymus Fischer, Jun 17 2007
Edited by Michel Marcus, Nov 11 2013

A055012 Sum of cubes of the digits of n written in base 10.

Original entry on oeis.org

0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1, 2, 9, 28, 65, 126, 217, 344, 513, 730, 8, 9, 16, 35, 72, 133, 224, 351, 520, 737, 27, 28, 35, 54, 91, 152, 243, 370, 539, 756, 64, 65, 72, 91, 128, 189, 280, 407, 576, 793, 125, 126, 133, 152, 189, 250, 341, 468, 637, 854
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

For n > 1999, a(n) < n. The iteration of this map on n either stops at a fixed point (A046197) or has a period of 2 or 3: {55,250,133}, {136,244}, {160,217,352}, or {919,1459}. - T. D. Noe, Jul 17 2007
A165330 and A165331 give the final value and the number of steps when iterating until a fixed point or cycle is reached. - Reinhard Zumkeller, Sep 17 2009

Crossrefs

Cf. A046197 Fixed points; A046459: integers equal to the sum of the digits of their cubes; A072884: 3rd-order digital invariants: the sum of the cubes of the digits of n equals some number k and the sum of the cubes of the digits of k equals n; A164883: cubes with the property that the sum of the cubes of the digits is also a cube.

Programs

  • Magma
    [0] cat [&+[d^3: d in Intseq(n)]: n in [1..60]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    A055012 := proc(n)
            add(d^3,d=convert(n,base,10)) ;
    end proc: # R. J. Mathar, Dec 15 2011
  • Mathematica
    Total/@((IntegerDigits/@Range[0,60])^3) (* Harvey P. Dale, Jan 27 2012 *)
    Table[Sum[DigitCount[n][[i]] i^3, {i, 9}], {n, 0, 60}] (* Bruno Berselli, Feb 01 2013 *)
  • PARI
    A055012(n)=sum(i=1,#n=digits(n),n[i]^3) \\ Charles R Greathouse IV, Jul 01 2013
    
  • Python
    def a(n): return sum(map(lambda x: x*x*x, map(int, str(n))))
    print([a(n) for n in range(60)]) # Michael S. Branicky, Jul 13 2022

Formula

a(n) = Sum_{k>=1} (floor(n/10^k) - 10*floor(n/10^(k+1)))^3. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n) + k^3, 0 <= k < 10. - Hieronymus Fischer, Jun 25 2007
From Reinhard Zumkeller, Sep 17 2009: (Start)
a(n) <= 729*A055642(n);
a(A165370(n)) = n and a(m) <> n for m < A165370(n);
a(A031179(n)) = A031179(n);
a(a(A165336(n))) = A165336(n) or a(a(a(A165336(n)))) = A165336(n). (End)
G.f. g(x) = Sum_{k>=0} (1-x^(10^k))*(x^(10^k)+8*x^(2*10^k)+27*x^(3*10^k)+64*x^(4*10^k)+125*x^(5*10^k)+216*x^(6*10^k)+343*x^(7*10^k)+512*x^(8*10^k)+729*x^(9*10^k))/((1-x)*(1-x^(10^(k+1))))
satisfies
g(x) = (x+8*x^2+27*x^3+64*x^4+125*x^5+216*x^6+343*x^7+512*x^8+729*x^9)/(1-x^10) + (1-x^10)*g(x^10)/(1-x). - Robert Israel, Jan 26 2017

Extensions

Edited by M. F. Hasler, Apr 12 2015
Iséki and Stewart links added by Don Knuth, Sep 07 2015

A051885 Smallest number whose sum of digits is n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 199, 299, 399, 499, 599, 699, 799, 899, 999, 1999, 2999, 3999, 4999, 5999, 6999, 7999, 8999, 9999, 19999, 29999, 39999, 49999, 59999, 69999, 79999, 89999, 99999, 199999, 299999, 399999, 499999
Offset: 0

Views

Author

Felice Russo, Dec 15 1999

Keywords

Comments

This is also the list of lunar triangular numbers: A087052 with duplicates removed. - N. J. A. Sloane, Jan 25 2011
Numbers n such that A061486(n) = n. - Amarnath Murthy, May 06 2001
The product of digits incremented by 1 is the same as the number incremented by 1. If a(n) = abcd...(a,b,c,d, etc. are digits of a(n)) {a(n) + 1} = (a+1)*(b+1)(c+1)*(d+1)*..., e.g., 299 + 1 = (2+1)*(9+1)*(9+1) = 300. - Amarnath Murthy, Jul 29 2003
A138471(a(n)) = 0. - Reinhard Zumkeller, Mar 19 2008
a(n+1) = A108971(A179988(n)). - Reinhard Zumkeller, Aug 09 2010, Jul 10 2011
Positions of records in A003132: A080151(n) = A003132(a(n)). - Reinhard Zumkeller, Jul 10 2011
a(n) = A242614(n,1). - Reinhard Zumkeller, Jul 16 2014
A254524(a(n)) = 1. - Reinhard Zumkeller, Oct 09 2015
The slowest strictly increasing sequence of nonnegative integers such that, for any two terms, calculating the difference of their decimal representations requires no borrowing. - Rick L. Shepherd, Aug 11 2017

Crossrefs

Numbers of form i*b^j-1 (i=1..b-1, j >= 0) for bases b = 2 through 9: A000225, A062318, A180516, A181287, A181288, A181303, A165804, A140576. - N. J. A. Sloane, Jan 25 2011
Cf. A002283.
Cf. A254524.

Programs

  • Haskell
    a051885 n = (m + 1) * 10^n' - 1 where (n',m) = divMod n 9
    -- Reinhard Zumkeller, Jul 10 2011
    
  • Magma
    [i*10^j-1: i in [1..9], j in [0..5]];
    
  • Maple
    b:=10; t1:=[]; for j from 0 to 15 do for i from 1 to b-1 do t1:=[op(t1), i*b^j-1]; od: od: t1; # N. J. A. Sloane, Jan 25 2011
  • Mathematica
    a[n_] := (Mod[n, 9] + 1)*10^Floor[n/9] - 1; Table[a[n], {n, 0, 49}](* Jean-François Alcover, Dec 01 2011, after Henry Bottomley *)
  • PARI
    A051885(n) = (n%9+1)*10^(n\9)-1  \\ M. F. Hasler, Jun 17 2012
    
  • PARI
    first(n) = Vec(x*(x^2 + x + 1)*(x^6 + x^3 + 1)/((x - 1)*(10*x^9 - 1)) + O(x^n), -n) \\ Iain Fox, Dec 30 2017
    
  • Python
    def A051885(n): return ((n % 9)+1)*10**(n//9)-1 # Chai Wah Wu, Apr 04 2021

Formula

These are the numbers i*10^j-1 (i=1..9, j >= 0). - N. J. A. Sloane, Jan 25 2011
a(n) = ((n mod 9) + 1)*10^floor(n/9) - 1 = a(n-1) + 10^floor((n-1)/9). - Henry Bottomley, Apr 24 2001
a(n) = A037124(n+1) - 1. - Reinhard Zumkeller, Jan 03 2008, Jul 10 2011
G.f.: x*(x^2+x+1)*(x^6+x^3+1) / ((x-1)*(10*x^9-1)). - Colin Barker, Feb 01 2013

Extensions

More terms from James Sellers, Dec 16 1999
Offset fixed by Reinhard Zumkeller, Jul 10 2011
Previous Showing 11-20 of 118 results. Next