cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A003658 Fundamental discriminants of real quadratic fields; indices of primitive positive Dirichlet L-series.

Original entry on oeis.org

1, 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44, 53, 56, 57, 60, 61, 65, 69, 73, 76, 77, 85, 88, 89, 92, 93, 97, 101, 104, 105, 109, 113, 120, 124, 129, 133, 136, 137, 140, 141, 145, 149, 152, 156, 157, 161, 165, 168, 172, 173, 177, 181, 184, 185, 188, 193, 197
Offset: 1

Views

Author

Keywords

Comments

All the prime numbers in the set of positive fundamental discriminants are Pythagorean primes (A002144). - Paul Muljadi, Mar 28 2008
Record numbers of prime divisors (with multiplicity) are 1, 5, and 4*A002110(n) for n > 0. - Charles R Greathouse IV, Jan 21 2022

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.
  • M. Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, page 432.
  • Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Union of A039955 and 4*A230375.

Programs

  • Mathematica
    fundamentalDiscriminantQ[d_] := Module[{m, mod = Mod[d, 4]}, If[mod > 1, Return[False]]; If[mod == 1, Return[SquareFreeQ[d] && d != 1]]; m = d/4; Return[SquareFreeQ[m] && Mod[m, 4] > 1]; ]; Join[{1}, Select[Range[200], fundamentalDiscriminantQ]] (* Jean-François Alcover, Nov 02 2011, after Eric W. Weisstein *)
    Select[Range[200], NumberFieldDiscriminant@Sqrt[#] == # &]  (* Alonso del Arte, Apr 02 2014, based on Arkadiusz Wesolowski's program for A094612 *)
    max = 200; Drop[Select[Union[Table[Abs[MoebiusMu[n]] * n * 4^Boole[Not[Mod[n, 4] == 1]], {n, max}]], # < max &], 1] (* Alonso del Arte, Apr 02 2014 *)
  • PARI
    v=[]; for(n=1,500,if(isfundamental(n),v=concat(v,n))); v
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(n=1,lim\4, listput(v, if(n[1]%4==1, n[1], 4*n[1]))); forsquarefree(n=lim\4+1, lim\1, if(n[1]%4==1, listput(v,n[1]))); Set(v) \\ Charles R Greathouse IV, Jan 21 2022
    
  • Sage
    def is_fundamental(d):
        r = d % 4
        if r > 1 : return False
        if r == 1: return (d != 1) and is_squarefree(d)
        q = d // 4
        return is_squarefree(q) and (q % 4 > 1)
    [1] + [n for n in (1..200) if is_fundamental(n)] # Peter Luschny, Oct 15 2018

Formula

Squarefree numbers (multiplied by 4 if not == 1 (mod 4)).
a(n) ~ (Pi^2/3)*n. There are (3/Pi^2)*x + O(sqrt(x)) terms up to x. - Charles R Greathouse IV, Jan 21 2022

Extensions

More terms from Eric W. Weisstein and Jason Earls, Jun 19 2001

A039957 Squarefree numbers congruent to 3 mod 4.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 31, 35, 39, 43, 47, 51, 55, 59, 67, 71, 79, 83, 87, 91, 95, 103, 107, 111, 115, 119, 123, 127, 131, 139, 143, 151, 155, 159, 163, 167, 179, 183, 187, 191, 195, 199, 203, 211, 215, 219, 223, 227, 231, 235, 239, 247, 251, 255
Offset: 1

Views

Author

Keywords

Comments

Negatives of odd fundamental discriminants D := b^2-4*a*c<0 of definite integer binary quadratic forms F=a*x^2+b*x*y+c*y^2. See Buell reference pp. 224-230. See 4*A089269 = A191483 for the even case and A003657 for combined even and odd numbers. - Wolfdieter Lang, Nov 07 2003
The asymptotic density of this sequence is 2/Pi^2 = 0.202642... (A185197). - Amiram Eldar, Feb 10 2021

References

  • Richard A. Mollin, Quadratics, CRC Press, 1996, Tables B1-B3.
  • Duncan A. Buell, Binary Quadratic Forms, Springer-Verlag, NY, 1989.

Crossrefs

Programs

  • Haskell
    a039957 n = a039957_list !! (n-1)
    a039957_list = filter ((== 3) . (`mod` 4)) a005117_list
    -- Reinhard Zumkeller, Aug 15 2011
    
  • Magma
    [4*n+3: n in [0..63] | IsSquarefree(4*n+3)];  // Bruno Berselli, Mar 04 2011
    
  • Mathematica
    fQ[n_] := SquareFreeQ[n] && Mod[n, 4] == 3; Select[ Range@ 258, fQ] (* Robert G. Wilson v, Mar 02 2011 *)
    Select[Range[3,300,4],SquareFreeQ] (* Harvey P. Dale, Mar 08 2015 *)
  • PARI
    is(n)=n%4==3 && issquarefree(n) \\ Charles R Greathouse IV, Feb 07 2017

Extensions

Offset corrected

A114643 Number of real primitive Dirichlet characters modulo n.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 1, 2, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1
Offset: 1

Views

Author

Steven Finch, Feb 16 2006

Keywords

Comments

a(n) = 1 if either n or -n is a fundamental discriminant (not both); a(n) = 2 if n and -n are fundamental discriminants; a(n) = 0 otherwise. Also, Sum_{k=1..n} a(k) is asymptotic to (6/Pi^2)*n.
From Jianing Song, Feb 27 2019: (Start)
If n is an odd squarefree number, then a(n) = 1, where the unique real primitive Dirichlet character modulo n is {Kronecker(n,k)} = {Jacobi(k,n)} if n == 1 (mod 4) and {Kronecker(-n,k)} = {Jacobi(k,n)} if n == 3 (mod 4).
If n = 4*m, m is an odd squarefree number, then a(n) is also 1, where the unique real primitive Dirichlet character modulo n is {Kronecker(-n,k)} if m == 1 (mod 4) and {Kronecker(n,k)} if m == 3 (mod 4).
If n is 8 times an odd squarefree number, then a(n) = 2, where the two real primitive Dirichlet characters modulo n are {Kronecker(n,k)} and {Kronecker(-n,k)}.
a(n) = 0 if n == 2 (mod 4), n is divisible by 16 or the square of an odd prime. (End)
Mobius transform of A060594. - Jianing Song, Mar 02 2019

Examples

			From _Jianing Song_, Feb 27 2019: (Start)
For n = 5, the only real primitive Dirichlet characters modulo n is {Kronecker(5,k)} = [0, 1, -1, -1, 1] = A080891, so a(5) = 1.
For n = 8, the real primitive Dirichlet characters modulo n are {Kronecker(8,k)} = [0, 1, 0, -1, 0, -1, 0, 1] = A091337 and [0, 1, 0, 1, 0, -1, 0, -1] = A188510, so a(8) = 2.
For n = 20, the only real primitive Dirichlet characters modulo n is {Kronecker(-20,k)} = [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1] = A289741, so a(20) = 1. (End)
		

References

  • W. Ellison and F. Ellison, Prime Numbers, Wiley, 1985, pp. 224-226.

Crossrefs

Cf. A160498 (number of cubic primitive Dirichlet characters modulo n), A160499 (number of quartic primitive Dirichlet characters modulo n).
Cf. A060594 (number of solutions to x^2 == 1 (mod n)).

Programs

  • Maple
    A114643 := proc(n)
        local a,pf,p,r;
        a := 1 ;
        for pf in ifactors(n)[2] do
            p := op(1,pf);
            r := op(2,pf);
            if p = 2 then
                if r =  1 then
                    a := 0 ;
                elif r =  2 then
                    ;
                elif r =  3 then
                    a := a*2 ;
                elif r >=  4 then
                    a := 0 ;
                end if;
            else
                if r =1 then
                    ;
                else
                    a := 0 ;
                end if;
            end if;
        end do:
        a ;
    end proc:
    seq(A114643(n),n=1..40) ; # R. J. Mathar, Mar 02 2015
    # Alternative:
    f:= proc(n) local r,v,F;
      v:= padic:-ordp(n,2);
      if v = 1 or v >= 4 then return 0
      elif v = 3 then r:= 2
      else r:= 1
      fi;
      if numtheory:-issqrfree(n/2^v) then r else 0 fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 08 2017
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d] * Sum[ If[ Mod[i^2 - 1, d] == 0, 1, 0], {i, 2, d}], {d, Divisors[n]}]; a[1] = 1; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Jun 20 2013, after Steven Finch *)
    f[2, e_] := Which[e == 1, 0, e == 2, 1, e == 3, 2, e >= 4, 0]; f[p_, e_] := If[e == 1, 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^2-1)%d, 0, 1)), 0)) \\ Steven Finch, Jun 09 2009

Formula

This sequence is multiplicative with a(2) = 0, a(4) = 1, a(8) = 2, a(2^r) = 0 for r > 3, a(p) = 1 for prime p > 2 and a(p^r) = 0 for r > 1. - Steven Finch, Mar 08 2006 (With correction by Jianing Song, Jun 28 2018)
Dirichlet g.f.: zeta(s)*(1 + 2^(-2s) + 2^(1-3s))/(zeta(2s)*(1 + 2^(-s))). - R. J. Mathar, Jul 03 2011

A089269 Squarefree numbers congruent to 1 or 2 mod 4.

Original entry on oeis.org

1, 2, 5, 6, 10, 13, 14, 17, 21, 22, 26, 29, 30, 33, 34, 37, 38, 41, 42, 46, 53, 57, 58, 61, 62, 65, 66, 69, 70, 73, 74, 77, 78, 82, 85, 86, 89, 93, 94, 97, 101, 102, 105, 106, 109, 110, 113, 114, 118, 122, 129, 130, 133, 134, 137, 138, 141, 142, 145, 146, 149, 154, 157
Offset: 1

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Comments

a(n) = one-fourth of the (negated) fundamental even discriminants D := b^2-4*a*c<0 of positive definite binary quadratic forms F=a*x^2+b*x*y+c*y^2. See A039957 for the odd numbers and A003657 for the combined even and odd numbers.
The asymptotic density of this sequence is 4/Pi^2 (A185199). - Amiram Eldar, Feb 23 2021

References

  • Duncan A. Buell, Binary Quadratic Forms, Springer-Verlag, NY, 1989, pp. 231-234.
  • Arnold Scholz and Bruno Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, Ch. 30.

Crossrefs

Programs

  • Magma
    [n: n  in [1..200] | IsSquarefree(n) and n mod 4 in [1,2]]; // Vincenzo Librandi, Oct 20 2017
  • Mathematica
    Select[Range[200], MemberQ[{1, 2}, Mod[#, 4]]&& SquareFreeQ[#]&] (* Vincenzo Librandi, Oct 20 2017 *)

Extensions

Entry revised by N. J. A. Sloane, May 28 2014

A191483 Even discriminants of imaginary quadratic fields, negated.

Original entry on oeis.org

4, 8, 20, 24, 40, 52, 56, 68, 84, 88, 104, 116, 120, 132, 136, 148, 152, 164, 168, 184, 212, 228, 232, 244, 248, 260, 264, 276, 280, 292, 296, 308, 312, 328, 340, 344, 356, 372, 376, 388, 404, 408, 420, 424, 436, 440, 452, 456, 472, 488, 516, 520, 532, 536, 548
Offset: 1

Views

Author

Robert G. Wilson v, Jun 04 2011

Keywords

Comments

Terms of A003657 that are not in A039957.
The asymptotic density of this sequence is 1/Pi^2 (A092742). - Amiram Eldar, Feb 23 2021

Crossrefs

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || ! Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *); -Select[-Range@550, FundamentalDiscriminantQ@# && EvenQ@# &]
    (* Second program: *)
    Select[Range[600], Mod[#, 4] == 0 && SquareFreeQ[#/4] && Mod[#, 16] != 12&] (* Jean-François Alcover, Jul 25 2019, after Andrew Howroyd *)
  • PARI
    ok(n)={isfundamental(-n) && n%2==0} \\ Andrew Howroyd, Jul 25 2018
    
  • PARI
    ok(n)={n%4==0 && issquarefree(n/4) && n%16<>12} \\ Andrew Howroyd, Jul 25 2018

Formula

Complement(A003657, A039957).
a(n) = 4*A089269(n). - Andrew Howroyd, Jul 25 2018

A354257 a(n) is the smallest k such that there exists a degree-k primitive Dirichlet characters modulo n, or -1 no such k exists.

Original entry on oeis.org

1, -1, 2, 2, 2, -1, 2, 2, 3, -1, 2, 2, 2, -1, 2, 4, 2, -1, 2, 2, 2, -1, 2, 2, 5, -1, 9, 2, 2, -1, 2, 8, 2, -1, 2, 6, 2, -1, 2, 2, 2, -1, 2, 2, 6, -1, 2, 4, 7, -1, 2, 2, 2, -1, 2, 2, 2, -1, 2, 2, 2, -1, 3, 16, 2, -1, 2, 2, 2, -1, 2, 6, 2, -1, 10, 2, 2, -1, 2, 4, 27, -1, 2, 2, 2, -1, 2, 2, 2, -1
Offset: 1

Views

Author

Jianing Song, May 21 2022

Keywords

Comments

For n !== 2 (mod 4), a(n) is the smallest k such that A354058(n,k) != 0 (or the smallest k such that A354061(n,k) != 0).
For n !== 2 (mod 4), a(n) is the smallest k such that Sum_{d|n} mu(n/d)*#{x in (Z/dZ)*: x^k == 1 (mod d)} != 0, where mu = A008683, (Z/dZ)* is the multiplicative group of integers modulo d.

Examples

			a(45) = 6: there does not exist a linear, quadratic, cubic, quartic or quintic primitive Dirichlet characters modulo 45, but there are 4 sextic primitive Dirichlet characters.
a(63) = 3: there does not exist a linear or quadratic primitive Dirichlet characters modulo 63, but there are 4 cubic primitive Dirichlet characters.
		

Crossrefs

A354258 gives the earliest occurrence of each positive integers.
Indices of 2: A003657 U A003658 \ {1}.

Programs

  • PARI
    a(n) = if(n%4==2, return(-1), my(e_0 = valuation(n,2)); n=n>>e_0; my(L=factor(n),w=omega(n),v=[],M=1); for(j=1, w, if(L[j,2]==1, v=concat(v,j), M*=L[j,1]^(L[j,2]-1))); if(e_0 >= 2, return(2^max(e_0-2,1)*M), for(i=1, #v, if(gcd(M,L[v[i],1]-1)==1, return(2*M))); return(M)))

Formula

Write n = 2^(e_0) * (p_1) * ... * (p_r) * (q_1)^(e_1) * ... * (q_s)^(e_s), where (p_i)'s and (q_j)'s are distinct odd primes, e_j >= 2. Let M = Product_{j=1..s} (q_j)^(e_j-1):
(i) if e_0 = 1, then a(n) = -1;
(ii) if e_0 = 2, then a(n) = 2*M;
(iii) if e_0 >= 3, then a(n) = 2^(e_0-2)*M;
(iv) if e_0 = 0, then a(n) = M if for every 1 <= i <= r, there exists 1 <= j <= s such that q_j divides p_i - 1; otherwise a(n) = 2*M.
Let k >= 1. Write k = 2^(e_0) * (q_1)^(e_1) * ... * (q_s)^(e_s), e_j >= 1. Let N = Product_{j=1..s} (q_j)^(e_j+1):
(i) if e_0 = 0, then a(n) = k <=> n = (p_1) * ... * (p_r) * N, where: p_i != q_j, and for every 1 <= i <= r, there exists 1 <= j <= s such that q_j divides p_i - 1.
(ii) if e_0 = 1, then a(n) = k <=> (a) n = (p_1) * ... * (p_r) * N, where: p_i != q_j, and there exists 1 <= i <= r such that none of (q_j)'s divides p_i - 1; or (b) n = (4 or 8) * N * (an odd squarefree number coprime to N);
(iii) if e_0 >= 2, then a(n) = k <=> n = 2^(e_0+2) * N * (an odd squarefree number coprime to N).

A191408 Duplicate of A006641.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 4, 2, 1, 5, 2, 2, 4, 4, 3, 1, 4, 7, 5, 3, 4, 6, 2, 2, 8, 5, 6, 3, 8, 2, 6, 10, 4, 2, 5, 5, 4, 4, 3, 10, 2, 7, 6, 4, 10, 1, 8, 11, 4, 5, 8, 4, 2, 13, 4, 9, 4, 3, 6, 14, 4, 7, 5, 4, 12, 2, 2, 15, 6, 6, 8, 7, 12, 4, 8, 13, 8, 2, 11, 8, 4, 3, 14, 4, 4, 8, 10, 8
Offset: 1

Views

Author

Robert G. Wilson v, Jun 01 2011

Keywords

Comments

Same as A006641. - Georg Fischer, Oct 12 2018

Crossrefs

Cf. A191410.

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric W. Weisstein *);
    NumberFieldClassNumber@ Sqrt@ # & /@ Select[-Range@ 300, FundamentalDiscriminantQ]
  • PARI
    for(n=1, 300, if(isfundamental(-n), print1(quadclassunit(-n).no, ", "))) \\ Andrew Howroyd, Jul 23 2018

Formula

Class number of A003657(n).

Extensions

Terms corrected by Andrew Howroyd and Robert G. Wilson v, Jul 24 2018

A306503 a(n) is the index in primes of A306500(n), or 0 if A306500(n) = 0.

Original entry on oeis.org

23338590792, 2946, 1, 2, 3, 1, 5, 2, 1, 3, 1, 5, 1, 5, 16, 1, 6, 7, 1, 2, 3, 38, 2, 1, 1, 5, 3, 1, 11, 11, 1, 1, 2, 9, 1, 13, 2, 1, 6, 15, 1, 3, 8, 4, 5, 1, 43, 1, 2, 8, 1, 1760, 2, 1, 10, 3, 1, 13, 29, 1, 5, 1, 11, 17, 2, 1, 8, 1, 5, 16, 1, 171, 33, 1, 4, 1, 2, 3
Offset: 1

Views

Author

Jianing Song, Feb 19 2019

Keywords

Comments

a(n) is the smallest integer k such that Sum_{i=1..k} Kronecker(-A003657(n),prime(i)) > 0, or 0 if no such k exists.
See A306500 for the actual primes.

Examples

			See A306500 for the example that shows a(18) = 7.
		

Crossrefs

Programs

  • PARI
    b(n) = my(i=0); forprime(p=2, oo, i+=kronecker(n, p); if(i>0, return(p)))
    print1(23338590792, ", "); for(n=4, 300, if(isfundamental(-n), print1(primepi(b(-n)), ", ")))

A329648 Let D = A014601(n) be the n-th positive integer congruent to 0 or 3 mod 4, then a(n) = b(D) := -Sum_{i=1..D} Kronecker(-D,i)*i, where Kronecker(-D,i) is the Kronecker symbol.

Original entry on oeis.org

1, 2, 7, 8, 11, 8, 30, 8, 19, 40, 69, 48, 9, 0, 93, 32, 70, 36, 156, 80, 43, 88, 235, 32, 102, 104, 220, 224, 177, 0, 126, 32, 67, 272, 497, 0, 50, 152, 395, 160, 249, 336, 522, 176, 182, 0, 760, 192, 0, 0, 515, 624, 321, 72, 888, 0, 230, 696, 1190, 480, 246, 0, 635
Offset: 1

Views

Author

Jianing Song, Nov 18 2019

Keywords

Comments

Note that {Kronecker(D,i)} is a Dirichlet character mod |D| if and only if D == 0, 1 (mod 4).
We have the identity: -Sum_{i=1..D} Kronecker(-D,i)*i^2 = D*b(D). Proof: -Sum_{i=1..D} Kronecker(-D,i)*i^2 = -(1/2)*Sum_{i=1..D} (Kronecker(-D,i)*i^2+Kronecker(-D,D-i)*(D-i)^2) = -(1/2)*Sum_{i=1..D} (Kronecker(-D,i)*(i^2-(D-i)^2)) = -(1/2)*Sum_{i=1..D} (Kronecker(-D,i)*(2*D*i-D^2) = D*b(D) + (D^2/2)*(Sum_{i=1..D} Kronecker(-D,i)) = D*b(D).

Examples

			For n = 7, D = 15, b(15) = -(1 + 2 + 4 - 7 + 8 - 11 - 13 - 14) = 30, which is equal to 15*h(-15). Note that the class number of Q[sqrt(-15)] is 2.
For D < 100, b(D) = 0 for D = 28 = 7*2^2, 60 = 15*2^2, 72 = 8*3^2, 92 = 23*2^2, 99 = 11*3^2 and 100 = 4*5^2, where -7, -15, -8, -23, -11 and -4 are fundamental discriminants. Note that Kronecker(-7,2) = Kronecker(-15,2) = Kronecker(-8,3) = Kronecker(-23,2) = Kronecker(-11,3) = 1. On the other hand, for D = 213444 = 4*231^2, we have c(213444) = 2*h(-4)/w(-4) * (1-Kronecker(-4,3))*(1-Kronecker(-4,7))*(1-Kronecker(-4,11)) = 4 and b(213444) = 213444*4 = 853776.
		

Crossrefs

Programs

  • Mathematica
    b[n_] = -Sum[KroneckerSymbol[n, i]*i, {i, 1, n}];
    a[n_] = b[2 n + Mod[n, 2]]
  • PARI
    b(n) = -sum(i=1, n, kronecker(-n,i)*i)
    a(n) = b(2*n + (n%2))

Formula

Let c(D) = b(D)/D = -(1/D)*(Sum_{i=1..D} Kronecker(-D,i)*i). Let -d be the unique fundamental discriminant (i.e., d is in A003657) such that D/d is a square, then c(D) = 2*h(-d)/w(-d) * Product_{primes p|D} (1-Kronecker(-d,p)), where h(-d) is the class number of K = Q[sqrt(-d)], w(-d) is the number of elements in K whose norms are 1 (w(-d) = 6 if d = 3, 4 if d = 4 and 2 if d > 4). This can be seen as the generalization of the well known class number formula: if -d is a fundamental discriminant then c(d) = 2*h(-d)/w(-d). See my notes in the Links section.
b(D) = 0 if and only if there exists a prime p being a factor of D such that if we write D = p^e * s, gcd(p,s) = 1, then e is even and Kronecker(-s,p) = 1; if p = 2, then s == 7 (mod 8).
If -d is a fundamental discriminant, then Sum_{k>=1} Kronecker(-d,k)/k = 2*Pi*h(-d)/(sqrt(d)*w(-d)) = Pi*c(d)/sqrt(d) = Pi*b(d)/d^(3/2). Here Sum_{k>=1} Kronecker(-d,k)/k is the value of the Dirichlet L-series of a non-principal character modulo d at s=1.

A225365 Negative fundamental discriminants with non-isomorphic class groups (negated).

Original entry on oeis.org

3, 15, 23, 39, 47, 71, 84, 87, 95, 119, 167, 191, 199, 215, 231, 239, 260, 311, 327, 335, 383, 399, 407, 420, 431, 455, 479, 551, 591, 647, 671, 695, 719, 759, 776, 791, 831, 839, 887, 935, 959, 983, 1031, 1079, 1140, 1151, 1199, 1239, 1271, 1295, 1319, 1391, 1439, 1487, 1511, 1559, 1679, 1751, 1799, 1847, 1959, 1991, 2015
Offset: 1

Views

Author

Rick L. Shepherd, May 05 2013

Keywords

Comments

More precisely, the least absolute values of negative fundamental discriminants with class groups non-isomorphic to all class groups for negative fundamental discriminants with smaller absolute values.
The n-th line of the linked file gives the invariant factor decomposition of the class group corresponding to the fundamental discriminant -a(n).

Examples

			The fundamental discriminant -3 corresponds to the trivial class group. The fundamental discriminant -15 is the first negative fundamental discriminant encountered (least absolute value) whose class group has a different structure, isomorphic to Z_2. The fundamental discriminant -84 is the one with least absolute value whose class group is isomorphic to the Klein-4 group.
		

Crossrefs

Cf. A003657.

Programs

  • PARI
    {allocatemem(32000000);
    \\ Increase precision to more than 100 digits to go beyond 7194 terms.
    default(realprecision, 100);
    terms_wanted = 7194;
    G = Set(); k = 0;
    while(length(G)1, print("Certify failed for ", -k, " -- exiting (", length(G), " terms found)"); break);
        if(setsearch(G, F.clgp.cyc)==0,
          G = setunion(G, [F.clgp.cyc]);
          write("b225365.txt", length(G), " ", k);
          write("a225365.txt", length(G), " ", F.clgp.cyc);
          if(length(G)%100==0, print1("...", length(G), "... ")))))}
Previous Showing 11-20 of 24 results. Next