cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 59 results. Next

A186230 Triangle T(n,k), n>=1, 1<=k<=n, read by rows: T(n,k) is the number of positive integers j

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 2, 4, 2, 0, 0, 0, 1, 0, 2, 0, 3, 0, 0, 1, 0, 1, 3, 0, 4, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 1, 2, 2, 4, 2, 6, 4, 6, 4, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 4, 0, 5, 0
Offset: 1

Views

Author

Alois P. Heinz, Feb 15 2011

Keywords

Comments

T(n,k) = A000010(k) if n is prime and 1

Examples

			T(n,1) = 0 because no positive integer j<1 can be found.
T(n,k) = 0 if GCD(n,k)>1.
T(7,5) = 4 because for j in {1,2,3,4} all conditions are satisfied.
Triangle T(n,k) begins:
  0;
  0, 0;
  0, 1, 0;
  0, 0, 1, 0;
  0, 1, 2, 2, 0;
  0, 0, 0, 0, 1, 0;
  0, 1, 2, 2, 4, 2, 0;
		

Crossrefs

Row sums give: A185953. Column k=2 gives: A000035 for n>1. Lower diagonal gives: A057475(n-1) for n>2. Cf. A000010, A000040, A003989.

Programs

  • Maple
    with(numtheory):
    T:= proc(n,k) local c, i, j, m;
          if k=1 or igcd(n, k)>1 then 0
        elif isprime(n) then phi(k)
        else m:= n*k;
             i:= igcd(m, 2);
             c:= 0;
             for j to k-1 by i do
               if igcd(m, j)=1 then c:= c+1 fi
             od; c
          fi
        end:
    seq(seq(T(n, k), k=1..n), n=1..20);
  • Mathematica
    t[n_, k_] := Module[{c, i, j, m}, If[ k == 1 || GCD[n, k] > 1, 0, If[PrimeQ[n], EulerPhi[k], m = n*k; i = GCD[m, 2]; c = 0; For[j = 1, j <= k-1, j = j+i, If[GCD[m, j] == 1, c = c+1]]; c]]]; Table[Table[t[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)

Formula

T(n,k) = |{ j : 1 <= j < k and GCD(n,k) = GCD(n,j) = GCD(k,j) = 1 }|.

A258820 Reversed rows of A178252 presented as diagonals of an irregular triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 5, 2, 1, 1, 3, 10, 1, 1, 7, 5, 5, 1, 1, 4, 7, 5, 1, 1, 9, 28, 35, 3, 1, 1, 5, 12, 14, 7, 1, 1, 11, 15, 21, 14, 7, 1, 1, 6, 55, 30, 126, 28, 1, 1, 13, 22, 165, 42, 21, 4, 1
Offset: 0

Author

Tom Copeland, Jun 18 2015

Keywords

Comments

The diagonals of T are the reversed rows of A178252. E.g., the fifth diagonal of T is (1,2,2,1,1) from the example below, which is the fifth reversed row of A178252.
Factoring out the greatest common divisor (gcd) of the coefficients of the sub-polynomials in the indeterminate q of the polynomials in s presented on p. 12 of the Alexeev et al. link and then evaluating the sub-polynomials at q=1 gives the first nine rows of T given in the example below. E.g., for k=6 (the seventh row), q*s^6 + (6*q + 9*q^2) s^4 + (15*q + 15*q^2) s^2 + 5 = q*s^6 + 3*(2*q + 3*q^2)*s^4 + 15*(q + q^2)*s^2 + 5 generates (1,2+3,1+1,1)=(1,5,2,1).
The row length sequence of this irregular triangle is A008619(n) = 1 + floor(n/2). - Wolfdieter Lang, Aug 25 2015

Examples

			The irregular triangle T(n,k) starts
n\k  0 1  2  3 4 5 ...
0:   1
1:   1
2:   1 1
3:   1 1
4:   1 3  1
5:   1 2  1
6:   1 5  2  1
7:   1 3 10  1
8:   1 7  5  5 1
9:   1 4  7  5 1
10:  1 9 28 35 3 1
... reformatted. - _Wolfdieter Lang_, Aug 25 2015
		

Programs

  • Mathematica
    max = 15; coes = Table[ PadRight[ CoefficientList[ BernoulliB[n, x], x], max], {n, 0, max-1}]; inv = Inverse[coes] // Numerator; t[n_, k_] := inv[[n, k]]; t[n_, k_] /; k == n+1 = 1; Table[t[n-k+1, k], {n, 2, max+1}, {k, 2, Floor[n/2]+1}] // Flatten (* Jean-François Alcover, Jul 22 2015 *)

Formula

T(n,k) = A178252(n-k,n-2k) = A055151(n,k) / A161642(n,k) = A007318(n,2k) * A000108(k) / A161642(n,k) = n! / [(n-2k)! k! (k+1)! A161642(n,k)] = A003989(n-k+1,k+1) * (n-k)! / [ (n-2k)! (k+1)! ], where A003989(j,k) = gcd(j,k).

A285724 Square array read by descending antidiagonals: If n > k, A(n,k) = T(lcm(n,k), gcd(n,k)), otherwise A(n,k) = T(gcd(n,k), lcm(n,k)), where T(n,k) is sequence A000027 considered as a two-dimensional table.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 21, 10, 11, 12, 13, 14, 15, 16, 46, 67, 78, 55, 21, 22, 23, 106, 25, 120, 27, 28, 29, 92, 31, 191, 210, 34, 105, 36, 37, 38, 211, 80, 41, 90, 231, 44, 45, 46, 154, 277, 379, 436, 465, 406, 300, 171, 55, 56, 57, 58, 59, 596, 61, 630, 63, 64, 65, 66, 67, 232, 436, 631, 781, 862, 903, 820, 666, 465, 253, 78, 79, 80, 529, 212, 991, 302, 85, 324, 1035, 230, 561, 90, 91
Offset: 1

Author

Antti Karttunen, May 03 2017

Keywords

Comments

The array is read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Examples

			The top left 12 X 12 corner of the array:
   1,   2,   4,   7,   11,   16,   22,   29,   37,   46,   56,   67
   3,   5,  16,  12,   46,   23,   92,   38,  154,   57,  232,   80
   6,  21,  13,  67,  106,   31,  211,  277,   58,  436,  529,   94
  10,  14,  78,  25,  191,   80,  379,   59,  631,  212,  947,  109
  15,  55, 120, 210,   41,  436,  596,  781,  991,   96, 1486, 1771
  21,  27,  34,  90,  465,   61,  862,  302,  193,  467, 2146,  142
  28, 105, 231, 406,  630,  903,   85, 1541, 1954, 2416, 2927, 3487
  36,  44, 300,  63,  820,  324, 1596,  113, 2557,  822, 3829,  355
  45, 171,  64, 666, 1035,  208, 2016, 2628,  145, 4006, 4852,  706
  55,  65, 465, 230,  101,  495, 2485,  860, 4095,  181, 5996, 1832
  66, 253, 561, 990, 1540, 2211, 3003, 3916, 4950, 6105,  221, 8647
  78,  90, 103, 117, 1830,  148, 3570,  375,  739, 1890, 8778,  265
		

Crossrefs

Cf. A000124 (row 1), A000217 (column 1), A001844 (main diagonal).

Programs

  • Scheme
    (define (A285724 n) (A285724bi (A002260 n) (A004736 n)))
    (define (A285724bi row col) (if (> row col) (A000027bi (lcm row col) (gcd row col)) (A000027bi (gcd row col) (lcm row col))))
    (define (A000027bi row col) (* (/ 1 2) (+ (expt (+ row col) 2) (- row) (- (* 3 col)) 2)))

Formula

If n > k, A(n,k) = T(lcm(n,k),gcd(n,k)), otherwise A(n,k) = T(gcd(n,k),lcm(n,k)), where T(n,k) is sequence A000027 considered as a two-dimensional table, that is, as a pairing function from N x N to N.
If n < k, A(n,k) = A286101(n,k), otherwise A(n,k) = A286102(n,k).

A287957 Table read by antidiagonals: T(n, k) = greatest common recursive divisor of n and k; n > 0 and k > 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 5, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 7, 2, 1
Offset: 1

Author

Rémy Sigrist, Jun 03 2017

Keywords

Comments

We use the definition of recursive divisor given in A282446.
More informally, the prime tower factorization of T(n, k) is the intersection of the prime tower factorizations of n and k (the prime tower factorization of a number is defined in A182318).
This sequence has connections with the classical GCD (A003989).
For any i > 0, j > 0 and k > 0:
- T(i, j) = 1 iff gcd(i, j) = 1,
- A007947(T(i, j)) = A007947(gcd(i, j)),
- T(i, j) >= 1,
- T(i, j) <= min(i, j),
- T(i, j) <= gcd(i, j),
- T(i, 1) = 1,
- T(i, i) = i,
- T(i, j) = T(j, i) (the sequence is commutative),
- T(i, T(j, k)) = T(T(i, j), k) (the sequence is associative),
- T(i, i*j) <= i,
- if gcd(i, j) = 1 then T(i*j, k) = T(i, k) * T(j, k) (the sequence is multiplicative),
- T(i, 2*i) = A259445(i).
See also A287958 for the LCM equivalent.

Examples

			Table starts:
n\k|    1   2   3   4   5   6   7   8   9   10
---+-----------------------------------------------
1  |    1   1   1   1   1   1   1   1   1    1  ...
2  |    1   2   1   2   1   2   1   2   1    2  ...
3  |    1   1   3   1   1   3   1   1   3    1  ...
4  |    1   2   1   4   1   2   1   2   1    2  ...
5  |    1   1   1   1   5   1   1   1   1    5  ...
6  |    1   2   3   2   1   6   1   2   3    2  ...
7  |    1   1   1   1   1   1   7   1   1    1  ...
8  |    1   2   1   2   1   2   1   8   1    2  ...
9  |    1   1   3   1   1   3   1   1   9    1  ...
10 |    1   2   1   2   5   2   1   2   1   10  ...
...
T(4, 8) = T(2^2, 2^3) = 2.
		

Programs

  • PARI
    T(n,k) = my (g=factor(gcd(n,k))); return (prod(i=1, #g~, g[i,1]^T(valuation(n, g[i,1]), valuation(k, g[i,1]))))

A331306 Lexicographically earliest infinite sequence such that a(i) = a(j) => A285732(i) = A285732(j) for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 6, 5, 3, 7, 8, 9, 10, 9, 11, 12, 13, 7, 6, 14, 15, 16, 17, 14, 18, 13, 19, 20, 21, 22, 23, 11, 8, 23, 24, 25, 26, 27, 28, 19, 29, 17, 30, 31, 32, 33, 34, 35, 30, 15, 12, 28, 36, 37, 38, 39, 40, 41, 42, 24, 43, 22, 42, 44, 45, 46, 47, 48, 49, 50, 36, 20, 16, 35, 51, 52, 53, 54, 55, 56, 57, 58, 51, 31, 59, 27, 50, 60, 61, 62, 63, 64, 65, 66, 67, 68, 44, 25, 21, 41
Offset: 1

Author

Antti Karttunen, Jan 19 2020

Keywords

Comments

Restricted growth sequence transform of A285732 (when considered as an one-dimensional sequence).
For all i, j:
a(i) = a(j) => A003989(i) = A003989(j),
a(i) = a(j) => A331307(i) = A331307(j) => A072030(i) = A072030(j).

Crossrefs

Programs

  • PARI
    up_to = 25425; \\ = binomial(225+1,2)
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000027pairton(a,b) = ((2+((a+b)^2 - a) - (3*b))/2);
    A285732sq(n, k) = if(n==k,-n,if(n>k,A000027pairton(n-k,k),A000027pairton(n,k-n)));
    A285732list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A285732sq(col,(a-(col-1))))); (v); };
    v331306 = rgs_transform(A285732list(up_to));
    A331306(n) = v331306[n];

A345418 Table read by upward antidiagonals: Given m, n >= 1, write gcd(prime(m),prime(n)) as d = u*prime(m)+v*prime(n) where u, v are minimal; T(m,n) = v.

Original entry on oeis.org

1, -1, 1, -2, 1, 1, -3, 2, -1, 1, -5, -2, 1, 1, 1, -6, 4, 3, -2, -1, 1, -8, -4, -2, 1, 1, 1, 1, -9, 6, -5, -3, 2, 2, -1, 1, -11, -6, 7, 2, 1, -1, -2, 1, 1, -14, 8, 4, 5, 6, -5, -2, -1, -1, 1, -15, 10, -9, -8, -3, 1, 2, 3, 2, -1, 1, -18, -10, 6, 10, 7, 4, -3, -4, -3, -1, 1, 1
Offset: 1

Author

N. J. A. Sloane, Jun 19 2021

Keywords

Comments

The gcd is 1 unless m=n when it is m; u is given in A345417. Minimal means minimize u^2+v^2. We follow Maple, PARI, etc., in setting u=0 and v=1 when m=n. If we ignore the diagonal, the v table is the transpose of the u table.

Examples

			The u table (A345417) begins:
[0, -1, -2, -3, -5, -6, -8, -9, -11, -14, -15, -18, -20, -21, -23, -26]
[1,  0,  2, -2,  4, -4,  6, -6,   8,  10, -10, -12,  14, -14,  16,  18]
[1, -1,  0,  3, -2, -5,  7,  4,  -9,   6,  -6,  15,  -8, -17,  19, -21]
[1,  1, -2,  0, -3,  2,  5, -8,  10,  -4,   9,  16,   6,  -6, -20, -15]
[1, -1,  1,  2,  0,  6, -3,  7,  -2,   8, -14, -10,  15,   4, -17, -24]
[1,  1,  2, -1, -5,  0,  4,  3,  -7,   9,  12, -17,  19,  10, -18,  -4]
[1, -1, -2, -2,  2, -3,  0,  9,  -4,  12,  11, -13, -12,  -5, -11,  25]
[1,  1, -1,  3, -4, -2, -8,  0,  -6,  -3, -13,   2,  13,  -9,   5,  14]
[1, -1,  2, -3,  1,  4,  3,  5,   0,  -5,  -4,  -8, -16,  15,  -2, -23]
[1, -1, -1,  1, -3, -4, -7,  2,   4,   0,  15, -14,  17,   3,  13,  11]
[1,  1,  1, -2,  5, -5, -6,  8,   3, -14,   0,   6,   4, -18,  -3,  12]
[1,  1, -2, -3,  3,  6,  6, -1,   5,  11,  -5,   0,  10,   7,  14, -10]
...
The v table (this entry) begins:
[  1,   1,  1,  1,   1,   1,   1,   1,  1,   1,   1,  1,   1,  1,   1,  1]
[ -1,   1, -1,  1,  -1,   1,  -1,   1, -1,  -1,   1,  1,  -1,  1,  -1, -1]
[ -2,   2,  1, -2,   1,   2,  -2,  -1,  2,  -1,   1, -2,   1,  2,  -2,  2]
[ -3,  -2,  3,  1,   2,  -1,  -2,   3, -3,   1,  -2, -3,  -1,  1,   3,  2]
[ -5,   4, -2, -3,   1,  -5,   2,  -4,  1,  -3,   5,  3,  -4, -1,   4,  5]
[ -6,  -4, -5,  2,   6,   1,  -3,  -2,  4,  -4,  -5,  6,  -6, -3,   5,  1]
[ -8,   6,  7,  5,  -3,   4,   1,  -8,  3,  -7,  -6,  6,   5,  2,   4, -8]
[ -9,  -6,  4, -8,   7,   3,   9,   1,  5,   2,   8, -1,  -6,  4,  -2, -5]
[-11,   8, -9, 10,  -2,  -7,  -4,  -6,  1,   4,   3,  5,   9, -8,   1, 10]
[-14,  10,  6, -4,   8,   9,  12,  -3, -5,   1, -14, 11, -12, -2,  -8, -6]
[-15, -10, -6,  9, -14,  12,  11, -13, -4,  15,   1, -5,  -3, 13,   2, -7]
[-18, -12, 15, 16, -10, -17, -13,   2, -8, -14,   6,  1,  -9, -6, -11,  7]
...
		

A123275 Square array A(n,m) = largest divisor of m which is coprime to n, read by upwards antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 3, 4, 1, 1, 1, 1, 5, 1, 2, 3, 4, 5, 6, 1, 1, 3, 1, 5, 3, 7, 1, 2, 1, 4, 5, 2, 7, 8, 1, 1, 3, 1, 1, 3, 7, 1, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 1, 1, 5, 1, 7, 1, 1, 5, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 1, 3, 1, 5, 3, 1, 1, 9, 5, 11, 3, 13, 1, 2, 1, 4, 1, 2, 7, 8, 1, 2
Offset: 1

Author

Leroy Quet, Oct 10 2006

Keywords

Comments

Read by upwards antidiagonals as A(1,1), A(2,1), A(1,2), A(3,1), A(2,2), A(1,3), etc.
Seen as a triangle, the rows appear to be the reversed rows of the regular triangle defined by t(n,k) = denominator(n*k/(n-k)) for n>=2 and 1<=kMichel Marcus, Mar 24 2022

Examples

			The top left 18 x 18 corner of the array:
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
  1, 1, 3, 1, 5, 3, 7, 1, 9,  5, 11,  3, 13,  7, 15,  1, 17,  9
  1, 2, 1, 4, 5, 2, 7, 8, 1, 10, 11,  4, 13, 14,  5, 16, 17,  2
  1, 1, 3, 1, 5, 3, 7, 1, 9,  5, 11,  3, 13,  7, 15,  1, 17,  9
  1, 2, 3, 4, 1, 6, 7, 8, 9,  2, 11, 12, 13, 14,  3, 16, 17, 18
  1, 1, 1, 1, 5, 1, 7, 1, 1,  5, 11,  1, 13,  7,  5,  1, 17,  1
  1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 11, 12, 13,  2, 15, 16, 17, 18
  1, 1, 3, 1, 5, 3, 7, 1, 9,  5, 11,  3, 13,  7, 15,  1, 17,  9
  1, 2, 1, 4, 5, 2, 7, 8, 1, 10, 11,  4, 13, 14,  5, 16, 17,  2
  1, 1, 3, 1, 1, 3, 7, 1, 9,  1, 11,  3, 13,  7,  3,  1, 17,  9
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10,  1, 12, 13, 14, 15, 16, 17, 18
  1, 1, 1, 1, 5, 1, 7, 1, 1,  5, 11,  1, 13,  7,  5,  1, 17,  1
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,  1, 14, 15, 16, 17, 18
  1, 1, 3, 1, 5, 3, 1, 1, 9,  5, 11,  3, 13,  1, 15,  1, 17,  9
  1, 2, 1, 4, 1, 2, 7, 8, 1,  2, 11,  4, 13, 14,  1, 16, 17,  2
  1, 1, 3, 1, 5, 3, 7, 1, 9,  5, 11,  3, 13,  7, 15,  1, 17,  9
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,  1, 18
  1, 1, 1, 1, 5, 1, 7, 1, 1,  5, 11,  1, 13,  7,  5,  1, 17,  1
...
A(12,1) = 12 because d=12 is the largest divisor of 12 for which gcd(d,1) = 1.
A(12,2) = 3 because d=3 is the largest divisor of 12 for which gcd(d,2) = 1.
A(12,3) = 4 because d=4 is the largest divisor of 12 for which gcd(d,3) = 1.
A(12,4) = 3 because d=3 is the largest divisor of 12 for which gcd(d,4) = 1.
A(12,6) = 1 because d=1 is the largest divisor of 12 for which gcd(d,6) = 1.
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] := Last[Select[Divisors[m], GCD[ #, n] == 1 &]];Flatten[Table[t[i + 1 - j, j], {i, 15}, {j, i}]] (* Ray Chandler, Oct 17 2006 *)
  • Python
    # Produces the triangle when the array is read by antidiagonals (upwards)
    from sympy.ntheory import divisors
    from math import gcd
    def T(n,m):
        return [i for i in divisors(m) if gcd(i,n)==1][-1]
    for i in range(1, 16):
        print([T(i+1-j, j) for j in range(1, i+1)]) # Indranil Ghosh, Mar 22 2017
    
  • Scheme
    ;; A naive implementation of A020639 given under that entry. The result of (A123275bi b a) is a product of all those prime factors of a (possibly occurring multiple times) that are not prime factors of b:
    (define (A123275 n) (A123275bi (A004736 n) (A002260 n)))
    (define (A123275bi b a) (let loop ((a a) (m 1)) (let ((s (A020639 a))) (cond ((= 1 a) m) ((zero? (modulo b s)) (loop (/ a s) m)) (else (loop (/ a s) (* s m)))))))
    ;; Antti Karttunen, Mar 22 2017

Extensions

Extended by Ray Chandler, Oct 17 2006
Name and Example section edited by Antti Karttunen, Mar 22 2017

A178340 Triangle T(n,m) read by rows: denominator of the coefficient [x^m] of the umbral inverse Bernoulli polynomial B^{-1}(n,x).

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 5, 1, 1, 1, 1, 6, 1, 2, 3, 2, 1, 7, 1, 1, 1, 1, 1, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 10, 1, 2, 1, 1, 5, 1, 1, 2, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 2, 3, 4, 1, 1, 1, 4, 3, 2, 1, 13
Offset: 0

Author

Paul Curtz, May 25 2010

Keywords

Comments

This is the triangle of denominators associated with the numerators of A178252.
(Unlike the coefficients of the Bernoulli Polynomials, the coefficients of the umbral inverse Bernoulli polynomials are all positive.)
Usually T(n,m) = A003989(n-m+1,m) for m>=1, but since we are tabulating denominators of reduced fractions here, this formula may be wrong by a cancelling integer factor.

Examples

			The triangle T(n,m) begins:
n\m  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
0:   1
1:   2 1
2:   3 1 1
3:   4 1 2 1
4:   5 1 1 1 1
5:   6 1 2 3 2 1
6:   7 1 1 1 1 1 1
7:   8 1 2 1 4 1 2 1
8:   9 1 1 3 1 1 3 1 1
9:  10 1 2 1 1 5 1 1 2 1
10: 11 1 1 1 1 1 1 1 1 1  1
11: 12 1 2 3 4 1 1 1 4 3  2  1
12: 13 1 1 1 1 1 1 1 1 1  1  1  1
13: 14 1 2 1 2 1 2 7 2 1  2  1  2  1
14: 15 1 1 3 1 5 3 1 1 3  5  1  3  1  1
... reformatted. - _Wolfdieter Lang_, Aug 25 2015
-------------------------------------------------
The rational triangle TinvB(n,m):= A178252(n,m) / T(n,m) begins:
n\m    0 1   2    3    4     5    6  7   8  9 10
0:     1
1:   1/2 1
2:   1/3 1   1
3    1/4 1 3/2    1
4:   1/5 1   2    2    1
5:   1/6 1 5/2 10/3  5/2     1
6:   1/7 1   3    5    5     3    1
7:   1/8 1 7/2    7 35/4     7  7/2  1
8:   1/9 1   4 28/3   14    14 28/3  4   1
9:  1/10 1 9/2   12   21 126/5   21 12 9/2  1
10: 1/11 1   5   15   30    42   42 30  15  5  1
... - _Wolfdieter Lang_, Aug 25 2015
Recurrence from the Sheffer a-sequence:
Tinv(3,2) = (3/2)*TinvB(2,1) = (3/2)*1 = 3/2.
From the z-sequence: Tinv(3,0) = 3*Sum_{j=0..2} z_j*TinvB(2,j) = 3*((1/2)*(1/3) -(1/12)*1 + 0*1) = 3*(1/6 - 1/12) = 1/4. - _Wolfdieter Lang_, Aug 25 2015
		

Crossrefs

Cf. A178252.

Programs

  • Mathematica
    max = 13; coes = Table[ PadRight[ CoefficientList[ BernoulliB[n, x], x], max], {n, 0, max-1}]; inv = Inverse[coes]; Table[ Take[inv[[n]], n], {n, 1, max}] // Flatten // Denominator (* Jean-François Alcover_, Aug 09 2012 *)

Formula

T(n,0) = n+1.
Recurrence for the rational triangle
TinvB(n,m):= A178252(n,m) / T(n,m) from the Sheffer a-sequence, which is 1, (repeat 0), see the comment under A178252: TinvB(n,m) = (n/m)*TinvB(n-1,m-1), for n >= m >= 1. From the z-sequence: TinvB(n,0) = n*Sum_{j=0..n-1} z_j * TinvB(n-1,j), n >= 1, TinvB(0,0) = 1. - Wolfdieter Lang, Aug 25 2015

A180172 a(n) = gcd(prime(n)+2, n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 9, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 1, 9, 1, 1, 13, 5, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 11, 1, 1, 1, 1, 71, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 15, 7, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1
Offset: 1

Author

Zak Seidov, Aug 15 2010

Keywords

Crossrefs

Programs

  • Magma
    [GCD(n,NthPrime(n) +2): n in [1..110]]; // G. C. Greubel, Mar 12 2023
    
  • Mathematica
    Table[GCD[n,Prime[n]+2],{n,200}]
  • SageMath
    [gcd(nth_prime(n) + 2, n) for n in range(1,111)] # G. C. Greubel, Mar 12 2023

A261176 Minimum value of (1/2)*Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} Sum_{l=1..n} gcd(b(i,j),b(k,l)) * ((i-k)^2+(j-l)^2) for an n X n matrix b filled with the integers 1 to n^2.

Original entry on oeis.org

0, 9, 126, 802, 3158, 10040, 25464, 58837, 123422, 238203, 429467, 733923, 1200319, 1912928, 2945116, 4369570, 6338678, 9053512, 12622814, 17359779, 23503546, 31347788, 41161317
Offset: 1

Author

Hugo Pfoertner, Aug 15 2015

Keywords

Comments

In one of his programming contests, Al Zimmermann coined the term "Delacorte Numbers" (after G. T. Delacorte, Jr., a New York City philantropist and benefactor) for the sum of D(a,b) = gcd(a,b) * distance^2(a,b), taken over all distinct pairs of integers (a,b) in a rectangular matrix.
The challenge in the contest was to find two kinds of arrangements of 1 to n^2, one minimizing the combined sum (this sequence) and the other maximizing the combined sum (A261177).
All terms beyond a(5) are conjectured based on numerical results. Terms up to a(17) have at least 5 independent verifications.
Upper bounds for the next terms are a(24)<=53670478, a(25)<=68938808, a(26)<=87777189, a(27)<=110759499.

Examples

			a(2)=9, because the matrix ((1 2)(3 4)) has Delacorte Number
D(1,2) + D(1,3) + D(1,4) + D(2,3) + D(2,4) + D(3,4) =
gcd(1,2)*(1^2 + 0^2) +
gcd(1,3)*(0^2 + 1^2) +
gcd(1,4)*(1^2 + 1^2) +
gcd(2,3)*(1^2 + 1^2) +
gcd(2,4)*(0^2 + 1^2) +
gcd(3,4)*(1^2 + 0^2) = 1*1 + 1*1 + 1*2 + 1*2 + 2*1 + 1*1 = 9.
Putting (2,4) in a row or column gives the minimum value of the matrix, whereas putting this pair in one of the diagonals gives the maximum.
a(3)=126, because no arrangement of the matrix elements exists that produces a smaller Delacorte Number than e.g. ((1 2 4)(3 6 8)(5 9 7)).
		

Crossrefs

Previous Showing 41-50 of 59 results. Next