cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A078911 Let r+i*s be the sum of the distinct first-quadrant Gaussian integers dividing n; sequence gives s values.

Original entry on oeis.org

0, 1, 0, 3, 3, 4, 0, 7, 0, 19, 0, 12, 5, 8, 12, 15, 5, 13, 0, 51, 0, 12, 0, 28, 25, 35, 0, 24, 7, 76, 0, 31, 0, 41, 24, 39, 7, 20, 20, 115, 9, 32, 0, 36, 39, 24, 0, 60, 0, 138, 20, 95, 9, 40, 36, 56, 0, 61, 0, 204, 11, 32, 0, 63, 92, 48, 0, 113, 0, 152, 0, 91, 11, 71, 100, 60, 0, 140
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2003

Keywords

Comments

A Gaussian integer z = x+iy is in the first quadrant if x > 0, y >= 0. Just one of the 4 associates z, -z, i*z, -i*z is in the first quadrant.
a(A004614(n)) = 0; a(n) = A078910(n)-A000203(n). - Vladeta Jovovic, Jan 11 2003

Examples

			The distinct first-quadrant divisors of 4 are 1, 1+i, 2, 2+2*i, 4, with sum 10+3*i, so a(4) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Im[Plus@@Divisors[n, GaussianIntegers -> True]], {n, 65}] (* Alonso del Arte, Jan 24 2012; typo fixed by Virgile Andreani, Jul 10 2016 *)
  • PARI
    A078911(n,S=[])=sumdiv(n*I,d,if(real(d)&imag(d)&!setsearch(S,d=vecsort(abs([real(d),imag(d)]))),S=setunion(S,[d]);(d[1]+d[2])>>(d[1]==d[2]))) \\ M. F. Hasler, Nov 22 2007

Extensions

More terms from Vladeta Jovovic, Jan 11 2003

A103223 Imaginary part of the totient function phi(n) for Gaussian integers. See A103222 for the real part and A103224 for the norm.

Original entry on oeis.org

0, 1, 0, 2, 2, 2, 0, 4, 0, 4, 0, 4, 4, 6, 4, 8, 4, 6, 0, 8, 0, 10, 0, 8, 10, 12, 0, 12, 6, 8, 0, 16, 0, 16, 12, 12, 6, 18, 8, 16, 8, 12, 0, 20, 12, 22, 0, 16, 0, 20, 8, 24, 8, 18, 20, 24, 0, 28, 0, 16, 10, 30, 0, 32, 24, 20, 0, 32, 0, 24, 0, 24, 10, 36, 20, 36, 0, 24, 0, 32, 0, 40, 0, 24, 32, 42
Offset: 1

Views

Author

T. D. Noe, Jan 26 2005

Keywords

Comments

Note that a(n)=0 when n is in A004614, the product of real Gaussian primes. It appears that all terms are nonnegative.

Crossrefs

Programs

  • Mathematica
    phi[z_] := Module[{f, k, prod}, If[Abs[z]==1, z, f=FactorInteger[z, GaussianIntegers->True]; If[Abs[f[[1, 1]]]==1, k=2; prod=f[[1, 1]], k=1; prod=1]; Do[prod=prod*(f[[i, 1]]-1)f[[i, 1]]^(f[[i, 2]]-1), {i, k, Length[f]}]; prod]]; Im[Table[phi[n], {n, 100}]]

A185321 Carmichael numbers congruent to 3 modulo 4.

Original entry on oeis.org

8911, 1024651, 1152271, 5481451, 10267951, 14913991, 64377991, 67902031, 139952671, 178482151, 368113411, 395044651, 612816751, 652969351, 743404663, 1419339691, 1588247851, 2000436751, 2199931651, 2560600351, 3102234751, 3215031751, 3411338491, 4340265931
Offset: 1

Views

Author

Keywords

Comments

Most Carmichael numbers are congruent to 1 modulo 4.
This is a subsequence of A167181: if a prime p | a(n), (p-1) | (a(n)-1) by Korselt's criterion. But a(n)-1 is 2 mod 4, so p-1 cannot be 0 mod 4. Hence all primes dividing a(n) are 3 mod 4. - Charles R Greathouse IV, Jan 27 2012
Pinch call the intersection of A007304 with this sequence C3, which are precisely those numbers which pass a Rabin-Miller test to a random base with probability 1/4. The first member of this sequence not in C3 is a(16) = 7 * 11 * 19 * 103 * 9419. - Charles R Greathouse IV, Jan 27 2012
Wright proves that this sequence is infinite, and in particular there are more than x^(k/(log log log x)^2) terms up to x for some k and large enough x. - Charles R Greathouse IV, Nov 09 2015

Crossrefs

Subsequence of A002997, A167181 (and hence A004614), A026424, and A177884.

Programs

  • Mathematica
    Select[4Range[10^4] + 3, (!PrimeQ[#] && IntegerQ[(# - 1)/CarmichaelLambda[#]]) &]
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    p=5;forprime(q=7,1e7,forstep(n=if(p%4==3,p+4,p+2),q-2,4,if(Korselt(n),print1(n", ")));p=q) \\ Charles R Greathouse IV, Jan 27 2012

Extensions

a(7)-a(40) from Charles R Greathouse IV, Jan 27 2012

A369105 Primes p such that p+2 has only prime factors congruent to -1 modulo 4.

Original entry on oeis.org

5, 7, 17, 19, 29, 31, 41, 47, 61, 67, 79, 97, 101, 127, 131, 137, 139, 149, 197, 199, 211, 229, 241, 251, 269, 277, 281, 307, 359, 379, 397, 421, 439, 461, 467, 487, 499, 521, 569, 571, 587, 601, 617, 619, 631, 641, 647, 691, 709, 719, 727, 751, 757, 787, 809, 811
Offset: 1

Views

Author

Stefano Spezia, Jan 13 2024

Keywords

Comments

Jones and Zvonkin call these primes BCC primes, where BCC stands for Bujalance, Cirre, and Conder.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]], PrimeQ[f=First/@FactorInteger[#+2]] == Table[True,{j,PrimeNu[#+2]}] && Mod[f,4] == Table[3, {m,PrimeNu[#+2]}] &]
  • PARI
    is1(n) = {my(p = factor(n)[, 1]); for(i = 1, #p, if(p[i] % 4 == 1, return(0))); 1;};
    lista(pmax) = forprime(p = 3, pmax, if(is1(p+2), print1(p, ", "))); \\ Amiram Eldar, Jun 03 2024

A094179 Numbers congruent to 3 mod 4 which are divisible only by primes congruent to 3 mod 4.

Original entry on oeis.org

3, 7, 11, 19, 23, 27, 31, 43, 47, 59, 63, 67, 71, 79, 83, 99, 103, 107, 127, 131, 139, 147, 151, 163, 167, 171, 179, 191, 199, 207, 211, 223, 227, 231, 239, 243, 251, 263, 271, 279, 283, 307, 311, 331, 343, 347, 359, 363, 367, 379, 383, 387, 399, 419, 423, 431
Offset: 1

Views

Author

Lekraj Beedassy, May 06 2004

Keywords

Crossrefs

Intersection of A004614 and A004767; intersection of A004614 and A026424.
Cf. A094180.

Programs

  • Mathematica
    Select[Range[3,431,4],Union[Mod[Transpose[FactorInteger[#]][[1]],4]] == {3}&] (* Harvey P. Dale, Apr 28 2012 *)
  • PARI
    {forstep(n=3,440,4,fac=factor(n);if(vecmin(vector(matsize(fac)[1],j,fac[j,1])%4)==3,print1(n,",")))} \\ Klaus Brockhaus, May 08 2004
    
  • PARI
    is(n)=if(n%4<3, return(0)); Set(factor(n)[,1]%4)==[3] \\ Charles R Greathouse IV, Jan 20 2022

Extensions

More terms from Klaus Brockhaus, May 08 2004

A242822 Decimal expansion of B. Davis' constant Pi^2/(8*G), a Riesz-Kolmogorov constant, where G is Catalan's constant.

Original entry on oeis.org

1, 3, 4, 6, 8, 8, 5, 2, 5, 1, 9, 9, 9, 4, 0, 6, 5, 9, 5, 1, 8, 2, 0, 0, 7, 5, 5, 5, 4, 4, 1, 1, 0, 7, 7, 9, 4, 7, 1, 5, 2, 5, 1, 6, 2, 5, 5, 6, 8, 9, 6, 8, 8, 2, 0, 8, 1, 9, 4, 2, 6, 2, 2, 8, 1, 2, 7, 0, 0, 8, 1, 0, 7, 3, 4, 2, 9, 5, 8, 3, 5, 2, 1, 0, 8, 2, 2, 9, 6, 3, 7, 7, 5, 4, 4, 7, 9, 8, 4, 7, 5
Offset: 1

Views

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.3468852519994065951820075554411...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 7.7 Riesz-Kolmogorov Constants, p. 474.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Pi(R)^2/(8*Catalan(R)); // G. C. Greubel, Aug 25 2018
  • Maple
    s:= convert(evalf(Pi^2/(8*Catalan), 140), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    RealDigits[Pi^2/(8*Catalan), 10, 100] // First
  • PARI
    default(realprecision, 100); Pi^2/(8*Catalan) \\ G. C. Greubel, Aug 25 2018
    

Formula

(Sum_{n>=0} 1/(2*n + 1)^2) / (Sum_{n>=0} (-1)^n/(2*n + 1)^2) = A111003/A006752.
Equals Product_{k>=1} (1 + 1/A002145(k)^2)/(1 - 1/A002145(k)^2) = A243381 / A243379. - Vaclav Kotesovec, Apr 30 2020
Equals Sum_{q in A004614} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
Equals 1/A377753. - Hugo Pfoertner, Nov 22 2024

A369107 a(n) is the number of numbers less than or equal to 10^n that are divisible only by primes congruent to 3 mod 4.

Original entry on oeis.org

4, 26, 201, 1680, 14902, 135124, 1243370, 11587149, 108941388, 1031330156, 9816605847
Offset: 1

Views

Author

Stefano Spezia, Jan 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[Join[{1}, Select[Range[10^n], PrimeQ[f = First/@FactorInteger[#]] == Table[True, {j,PrimeNu[#]}] && Mod[f,4] == Table[3, {m,PrimeNu[#]}] && #<=10^n &]]]; Array[a, 10]
  • PARI
    is1(n) = {my(p = factor(n)[, 1]); for(i = 1, #p, if(p[i] % 4 == 1, return(0))); 1;};
    lista(nmax) = {my(c = 0, pow = 10, n = 1, nm = nmax + 1); forstep(k = 1, 10^nmax + 1, 2, if(k > pow, print1(c, ", "); pow *= 10; n++; if(n == nm, break)); if(is1(k), c++));} \\ Amiram Eldar, Jun 03 2024

Extensions

a(11) from Amiram Eldar, Jun 03 2024

A369111 a(n) is the number of primes p less than or equal to 10^n such that p+2 has only prime factors congruent to -1 modulo 4.

Original entry on oeis.org

2, 12, 65, 388, 2708, 19969, 155369, 1250182, 10345920, 87545946, 753285178, 6571105993
Offset: 1

Views

Author

Stefano Spezia, Jan 13 2024

Keywords

Examples

			a(2) = 12 since there are 12 primes p less than or equal to 10^2 such that p+2 has only prime factors congruent to -1 modulo 4 (cf. A369105): 5, 7, 17, 19, 29, 31, 41, 47, 61, 67, 79, 97.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[Select[Prime[Range[10^n]], PrimeQ[f=First/@FactorInteger[#+2]] == Table[True, {j,PrimeNu[#+2]}] && Mod[f,4] == Table[3, {m,PrimeNu[#+2]}] && #<=10^n &]]; Array[a,10]
  • PARI
    is1(n) = {my(p = factor(n)[, 1]); for(i = 1, #p, if(p[i] % 4 == 1, return(0))); 1;};
    lista(nmax) = {my(c = 0, pow = 10, n = 1, nm = nmax + 1); forprime(p = 3, , if(p > pow, print1(c, ", "); pow *= 10; n++; if(n == nm, break)); if(is1(p+2), c++));} \\ Amiram Eldar, Jun 03 2024

Extensions

a(11)-a(12) from Amiram Eldar, Jun 03 2024

A369564 Powerful numbers whose prime factors are all of the form 4*k + 3.

Original entry on oeis.org

1, 9, 27, 49, 81, 121, 243, 343, 361, 441, 529, 729, 961, 1089, 1323, 1331, 1849, 2187, 2209, 2401, 3087, 3249, 3267, 3481, 3969, 4489, 4761, 5041, 5929, 6241, 6561, 6859, 6889, 8649, 9261, 9747, 9801, 10609, 11449, 11907, 11979, 12167, 14283, 14641, 16129, 16641
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2024

Keywords

Comments

Closed under multiplication.

Crossrefs

Intersection of A001694 and A004614.
Similar sequence: A352492, A369563, A369565, A369566.

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[FactorInteger[n], Mod[First[#], 4] == 3 && Last[#] > 1 &]; Select[Range[20000], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 1]%4 != 3 || f[i, 2] == 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p == 3 (mod 4)} (1 + 1/(p*(p-1))) = 3*A013661*A334426/(4*A175647) = 1.2161513254... .

A081339 Numbers n such that sigma(n^2) modulo 4 = 1.

Original entry on oeis.org

1, 3, 7, 9, 10, 11, 19, 20, 21, 23, 25, 26, 27, 30, 31, 33, 34, 40, 43, 47, 49, 52, 57, 58, 59, 60, 63, 65, 67, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 85, 90, 93, 99, 102, 103, 104, 106, 107, 110, 116, 120, 121, 122, 127, 129, 131, 133, 136, 139, 140, 141, 145
Offset: 1

Views

Author

Benoit Cloitre, Apr 20 2003

Keywords

Comments

Numbers n such that the sum of exponents of primes == 1 (mod 4) in the prime factorization of n is not congruent to n mod 2. - Robert Israel, Jan 22 2017

Crossrefs

Contains A004614.

Programs

  • Maple
    filter:= proc(n) local F, t;
      F:= select(t -> t[1] mod 4 = 1, ifactors(n)[2]);
      (add(t[2],t=F) - n) mod 2 = 1;
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 22 2017
  • Mathematica
    Select[Range[150],Mod[DivisorSigma[1,#^2],4]==1&] (* Harvey P. Dale, Apr 07 2012 *)
  • PARI
    isok(n) = (sigma(n^2) % 4) == 1; \\ Michel Marcus, Jan 22 2017
Previous Showing 11-20 of 33 results. Next