cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A216054 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 6, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 0, 5, 9, 5, 0, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 19, 19, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 47, 66, 66, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 89, 155, 221, 221, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 0, 42, 131, 286, 507, 728, 728, 0, 0, ... row n=5
0, 0, 0, 0, 0, 0, 131, 417, 924, 1652, 2380, 2380, 0, ... row n=6
...
		

References

  • E. Lucas, Théorie des nombres, A.Blanchard, Paris, 1958, Tome 1, p.89

Crossrefs

Cf. Similar sequences A216230, A216228, A216226, A216238

Programs

  • Mathematica
    Clear[t]; t[0, k_ /; k <= 5] = 1; t[n_, k_] /; k < n || k > n+5 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)

Formula

T(n,n) = A080937(n).
T(n,n+1) = A080937(n+1).
T(n,n+2) = A094790(n+1).
T(n,n+3) = A094789(n+1).
T(n,n4) = T(n,n+5) = A005021(n).
Sum_{k, 0<=k<=n} T(n-k,k) = A028495(n).

A216235 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 2 or if k-n >= 5, T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 5, 0, 0, 0, 5, 9, 5, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 507, 417, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Comments

Arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
  1, 1, 1,  1,  1,   0,   0,   0,   0,   0, ... row n=0
  1, 2, 3,  4,  5,   5,   0,   0,   0,   0, ... row n=1
  0, 2, 5,  9, 14,  19,  19,   0,   0,   0, ... row n=2
  0, 0, 5, 14, 28,  47,  66,  66,   0,   0, ... row n=3
  0, 0, 0, 14, 42,  89, 155, 221, 221,   0, ... row n=4
  0, 0, 0,  0, 42, 131, 286, 507, 728, 728, ... row n=5
  ...
		

Crossrefs

Formula

T(n,n) = T(n+1,n) = A080937(n+1).
T(n,n+1) = A094790(n+1).
T(n,n+2) = A094789(n+1).
T(n,n+3) = T(n,n+4) = A005021(n).
Sum_{k=0..n} T(n-k,k) = A028495(n+1). - Philippe Deléham, Mar 23 2013

A005022 Number of walks of length 2n+6 in the path graph P_7 from one end to the other.

Original entry on oeis.org

6, 26, 100, 364, 1288, 4488, 15504, 53296, 182688, 625184, 2137408, 7303360, 24946816, 85196928, 290926848, 993379072, 3391793664, 11580678656, 39539651584, 134998297600, 460915984384, 1573671536640, 5372862566400, 18344123969536, 62630804299776
Offset: 1

Views

Author

Keywords

Examples

			Example: a(1)=6 because in the path ABCDEFG we have ABABCDEFG, ABCBCDEFG, ABCDCDEFG, ABCDEDEFG, ABCDEFEFG and ABCDEFGFG. - _Emeric Deutsch_, Apr 02 2004
		

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A094811 for another version.

Programs

  • Magma
    I:=[6, 26, 100]; [n le 3 select I[n] else 6*Self(n-1)-10*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 08 2013
    
  • Maple
    a:=k->sum(binomial(6+2*k,8*j+k-2),j=ceil((2-k)/8)..floor((8+k)/8))-sum(binomial(6+2*k,8*j+k-1),j=ceil((1-k)/8)..floor((7+k)/8)): seq(a(k),k=1..28);
    A005022:=-1/((2*z-1)*(2*z**2-4*z+1)) -1; # [Conjectured (correctly) by Simon Plouffe in his 1992 dissertation. Gives sequence with an additional leading term of 1.]
  • Mathematica
    CoefficientList[Series[-(2 (2 z^2 - 5 z + 3))/(4 z^3 - 10 z^2 + 6 z - 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 27 2011 *)
    CoefficientList[Series[(1 / x) (1 / (1 - 6 x + 10 x^2 - 4 x^3) - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 08 2013 *)
  • PARI
    Vec(2*(1-x)*(3-2*x) / ((1-2*x)*(1-4*x+2*x^2)) + O(x^50)) \\ Colin Barker, Apr 27 2016

Formula

G.f.: 1/(1-6x+10x^2-4x^3)-1.
a(n) = 6*a(n-1)-10*a(n-2)+4*a(n-3). - Emeric Deutsch, Apr 02 2004
a(k) = sum(binomial(6+2*k, 8*j+k-2)-binomial(6+2*k, 8*j+k-1), j=-infinity..infinity) (a finite sum).
The g.f. x^3/(1-6*x+10*x^2-4*x^3) occurs on page 320 of Viennot, 2002.
a(n) = -2^(1+n)+(3/2-sqrt(2))*(2-sqrt(2))^n+(3/2+sqrt(2))*(2+sqrt(2))^n - Colin Barker, Apr 27 2016
E.g.f.: (-2 + 3*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x))*exp(2*x) - 1. - Ilya Gutkovskiy, Apr 27 2016

Extensions

Edited by Emeric Deutsch, Apr 28 2004

A005024 Number of walks of length 2n+8 in the path graph P_9 from one end to the other.

Original entry on oeis.org

8, 43, 196, 820, 3264, 12597, 47652, 177859, 657800, 2417416, 8844448, 32256553, 117378336, 426440955, 1547491404, 5610955132, 20332248992, 73645557469, 266668876540, 965384509651, 3494279574288, 12646311635088, 45764967830976
Offset: 1

Views

Author

Keywords

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005023. Truncated version of A094865.

Programs

  • Magma
    I:=[8, 43, 196, 820]; [n le 4 select I[n] else 8*Self(n-1)-21*Self(n-2)+20*Self(n-3)-5*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 08 2013
  • Maple
    a:=k->sum(binomial(8+2*k,10*j+k-2),j=ceil((2-k)/10)..floor((10+k)/10))-sum(binomial(8+2*k,10*j+k-1),j=ceil((1-k)/10)..floor((9+k)/10)): seq(a(k),k=1..28);
    A005024:=-(-8+21*z-20*z**2+5*z**3)/(5*z**2-5*z+1)/(z**2-3*z+1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(-5 z^3 + 20 z^2 - 21 z + 8)/((z^2 - 3 z + 1) (5 z^2 - 5 z + 1)), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 27 2011 *)
    CoefficientList[Series[(1 / x) (1 / (1 - 8 x + 21 x^2 - 20 x^3 + 5 x^4) - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 08 2013 *)
  • PARI
    x='x+O('x^66); Vec(-1+1/((1-3*x+x^2)*(1-5*x+5*x^2))) \\ Joerg Arndt, May 01 2013
    

Formula

From Emeric Deutsch, Apr 02 2004: (Start)
G.f. (assuming a(0)=1): 1/(1 - 8x + 21x^2 - 20x^3 + 5x^4) - 1.
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4). (End)
a(k) = sum(binomial(8+2k, 10j+k-2)-binomial(8+2k, 10j+k-1), j=-infinity..infinity) (a finite sum).

Extensions

Better definition from Emeric Deutsch, Apr 02 2004

A005025 Random walks.

Original entry on oeis.org

9, 53, 260, 1156, 4845, 19551, 76912, 297275, 1134705, 4292145, 16128061, 60304951, 224660626, 834641671, 3094322026, 11453607152, 42344301686, 156404021389, 577291806894, 2129654436910, 7853149169635, 28949515515376, 106692395098433, 393137817645838
Offset: 1

Views

Author

Keywords

Comments

Number of walks of length 2n+9 in the path graph P_10 from one end to the other one. - Emeric Deutsch, Apr 02 2004

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968, p. 96
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    I:=[9,53,260,1156,4845]; [n le 5 select I[n] else 9*Self(n-1)-28*Self(n-2)+35*Self(n-3)-15*Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Jun 20 2017
  • Maple
    a:=k->sum(binomial(9+2*k,11*j+k-2),j=ceil((2-k)/11)..floor((11+k)/11))-sum(binomial(9+2*k,11*j+k-1),j=ceil((1-k)/11)..floor((10+k)/11)): seq(a(k),k=1..28);
    A005025:=-(9-28*z+35*z**2-15*z**3+z**4)/(-1+9*z-28*z**2+35*z**3-15*z**4+z**5); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{9, -28, 35, -15, 1}, {9, 53, 260, 1156, 4845}, 25] (* Vincenzo Librandi, Jun 20 2017 *)

Formula

From Emeric Deutsch, Apr 02 2004: (Start)
G.f.: 1/(1 - 9*x + 28*x^2 - 35*x^3 + 15*x^4 - x^5) - 1.
a(n) = 9*a(n-1) - 28*a(n-2) + 35*a(n-3) - 15*a(n-4) + a(n-5). (End)
a(k) = Sum_{j=-infinity..infinity} (binomial(9+2*k, 11j+k-2) - binomial(9+2*k, 11j+k-1)) (a finite sum).

A072266 Number of words of length 2n generated by the two letters s and t that reduce to the identity 1 using the relations sssssss=1, tt=1 and stst=1. The generators s and t along with the three relations generate the 14-element dihedral group D7.

Original entry on oeis.org

1, 1, 3, 10, 35, 126, 462, 1717, 6451, 24463, 93518, 360031, 1394582, 5430530, 21242341, 83411715, 328589491, 1297937234, 5138431851, 20380608990, 80960325670, 322016144629, 1282138331587, 5109310929719, 20374764059254
Offset: 0

Views

Author

Jamaine Paddyfoot (jay_paddyfoot(AT)hotmail.com) and John W. Layman, Jul 08 2002

Keywords

Examples

			The words tttt=tsts=stst=1 so a(2)=3.
		

Crossrefs

Bisection of A377573.

Programs

  • Mathematica
    LinearRecurrence[{9,-26,25,-4},{1,1,3,10,35},30] (* Harvey P. Dale, Apr 16 2022 *)
  • PARI
    a(n)=if(n<1,n==0,sum(k=-(n-1)\7,(n-1)\7,C(2*n-1,n+7*k)))
    
  • PARI
    Vec((1 - 8*x + 20*x^2 - 16*x^3 + 2*x^4) / ((1 - 4*x)*(1 - 5*x + 6*x^2 - x^3)) + O(x^30)) \\ Colin Barker, Apr 26 2019

Formula

G.f.: 1 -x*(2*x-1)*(x^2-4*x+1)/((4*x-1)*(x^3-6*x^2+5*x-1)). - Michael Somos, Jul 21 2002
a(n) = 9*a(n-1) - 26*a(n-2) + 25*a(n-3) - 4*a(n-4) for n>4. - Colin Barker, Apr 26 2019
14*a(n) = 4^n +2*(3*A005021(n) -10*A005021(n-1) +6*A005021(n-2)), n>0. - R. J. Mathar, Nov 05 2024

A215492 a(n) = 21*a(n-2) + 7*a(n-3), with a(0)=0, a(1)=3, and a(2)=6.

Original entry on oeis.org

0, 3, 6, 63, 147, 1365, 3528, 29694, 83643, 648270, 1964361, 14199171, 45789471, 311933118, 1060973088, 6871121775, 24463966674, 151720368891, 561841152579, 3357375513429, 12860706786396, 74437773850062, 293576471108319, 1653218198356074, 6686170310225133
Offset: 0

Views

Author

Roman Witula, Aug 13 2012

Keywords

Comments

We have a(n)=B(n;3), where B(n;d), n=1,2,..., d \in C, denote one of the quasi-Fibonacci numbers defined in the comments to A121449 and in the Witula-Slota-Warzynski paper. Its conjugate sequences A(n;3) and C(n;3) are discussed in A121458 and A215484 respectively. Similarly as in A121458 we deduce that each of the following elements a(3*n), a(3*n+1), a(3*n+2) is divided by 3*7^n for every n=0,1,... .

Crossrefs

Programs

  • Magma
    I:=[0,3,6]; [n le 3 select I[n] else 21*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{0,21,7}, {0,3,6}, 50]
    CoefficientList[Series[(3 x + 6 x^2)/(1 - 21 x^2 - 7 x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    concat(0,Vec((3+6*x)/(1-21*x^2-7*x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
    

Formula

a(n) = (1/7)*((c(1)-c(4))*(1+3*c(1))^n + (c(2)-c(1))*(1+3*c(2))^n + (c(4)-c(2))*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) (for the proof see Witula-Slota-Warzynski paper).
G.f.: (3*x+6*x^2)/(1-21*x^2-7*x^3).

A259475 Array read by antidiagonals: row n gives coefficients of Taylor series expansion of 1/F_{n+1}(t), where F_i(t) is a Fibonacci polynomial defined by F_0=1, F_1=1, F_{i+1} = F_i-t*F_{i-1}.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 8, 8, 1, 0, 1, 5, 13, 21, 16, 1, 0, 1, 6, 19, 40, 55, 32, 1, 0, 1, 7, 26, 66, 121, 144, 64, 1, 0, 1, 8, 34, 100, 221, 364, 377, 128, 1, 0, 1, 9, 43, 143, 364, 728, 1093, 987, 256, 1, 0, 1, 10, 53, 196, 560, 1288, 2380, 3280, 2584, 512, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Examples

			The first few antidiagonals are:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  1,  0;
  1, 3,  4,  1,   0;
  1, 4,  8,  8,   1,   0;
  1, 5, 13, 21,  16,   1,  0;
  1, 6, 19, 40,  55,  32,  1, 0;
  1, 7, 26, 66, 121, 144, 64, 1, 0;
  ...
Square array starts:
  [0] 1, 0,  0,   0,    0,    0,     0,     0,      0,       0,       0, ...
  [1] 1, 1,  1,   1,    1,    1,     1,     1,      1,       1,       1, ...
  [2] 1, 2,  4,   8,   16,   32,    64,   128,    256,     512,    1024, ...
  [3] 1, 3,  8,  21,   55,  144,   377,   987,   2584,    6765,   17711, ...
  [4] 1, 4, 13,  40,  121,  364,  1093,  3280,   9841,   29524,   88573, ...
  [5] 1, 5, 19,  66,  221,  728,  2380,  7753,  25213,   81927,  266110, ...
  [6] 1, 6, 26, 100,  364, 1288,  4488, 15504,  53296,  182688,  625184, ...
  [7] 1, 7, 34, 143,  560, 2108,  7752, 28101, 100947,  360526, 1282735, ...
  [8] 1, 8, 43, 196,  820, 3264, 12597, 47652, 177859,  657800, 2417416, ...
  [9] 1, 9, 53, 260, 1156, 4845, 19551, 76912, 297275, 1134705, 4292145, ...
		

Crossrefs

The initial rows of the array are A000007, A000012, A000079, A001906, A003432, A005021, A094811, A094256.
A(n,n) gives A274969.
Cf. A309896.
A188843 is a variant without the first two rows and the first column, and the antidiagonals read in opposite direction.

Programs

  • Maple
    F:= proc(n) option remember;
          `if`(n<2, 1, expand(F(n-1)-t*F(n-2)))
        end:
    A:= (n, k)-> coeff(series(1/F(n+1), t, k+1), t, k):
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Jul 04 2015
  • Mathematica
    F[n_] := F[n] = If[n<2, 1, Expand[F[n-1] - t*F[n-2]]]; A[n_, k_] := SeriesCoefficient[1/F[n+1], { t, 0, k}]; Table[A[d-k, k], {d, 0, 12}, {k, 0, d}] // Flatten (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)
  • SageMath
    @cached_function
    def F(n, k):
        if k <  0: return 0
        if k == 0: return 1
        return sum((-1)^j*binomial(n-1-j,j+1)*F(n,k-2-2*j) for j in (0..(n-2)/2))
    def A(n, k): return F(n+1, 2*k)
    print([A(n-k, k) for n in (0..11) for k in (0..n)]) # Peter Luschny, Aug 21 2019

Formula

Let F(n, k) = Sum_{j=0..(n-2)/2} (-1)^j*binomial(n-1-j, j+1)*F(n, k-2-2*j) for k > 0; F(n, 0) = 1 and F(n, k) = 0 if k < 0. Then A(n, k) = F(n+1, 2*k). See [Shibukawa] and A309896. - Peter Luschny, Aug 21 2019

Extensions

More terms from Alois P. Heinz, Jul 04 2015

A122589 Expansion of 1/(1 - 11*x + 45*x^2 - 84*x^3 + 70*x^4 - 21*x^5 + x^6).

Original entry on oeis.org

1, 11, 76, 425, 2109, 9709, 42504, 179630, 740025, 2991495, 11920740, 46981740, 183579396, 712493461, 2750450981, 10572046555, 40495806764, 154683305139, 589504177384, 2242448706435, 8517201473375, 32309383853565
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 19 2006

Keywords

Comments

Previous name was: Sum_{n >= 0} a(n)*x^(2n) / 4^(n+6) = 1/(4096 - 11264*x^2 + 11520*x^4 - 5376*x^6 + 1120*x^8 - 84*x^10 + x^12).
Suggested by study of polynomials associated with the regular 13-gon.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-11*x+45*x^2 -84*x^3+70*x^4-21*x^5+x^6) )); // G. C. Greubel, Nov 29 2021
    
  • Maple
    A122589:= proc(n) coeftayl(1/(4096-11264*x^2+11520*x^4-5376*x^6+1120*x^8-84*x^10 +x^12), x=0,2*n); %*2^(2*n+12); end: seq(A122589(n), n=0..30); # R. J. Mathar, Sep 21 2007
  • Mathematica
    m=12; p[x_]:= ExpandAll[x^m*ChebyshevU[m, 1/x]]; Table[ SeriesCoefficient[ Series[2^(n+m-1)*x/p[x], {x,0,30}], n], {n,1,30,2}]
  • Sage
    def A122589_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-11*x+45*x^2-84*x^3+70*x^4-21*x^5+x^6) ).list()
    A122589_list(30) # G. C. Greubel, Nov 29 2021

Formula

G.f.: 1/(1 - 11*x + 45*x^2 - 84*x^3 + 70*x^4 - 21*x^5 + x^6). - Colin Barker, Oct 16 2013

Extensions

Edited by N. J. A. Sloane, Oct 02 2006
More terms from R. J. Mathar, Sep 21 2007
New name from Colin Barker, Oct 16 2013

A072844 Number of words of length 2n-1 generated by the two letters s and t that reduce to the identity 1 by using the relations sssssss=1, tt=1 and stst=1. The generators s and t along with the three relations generate the 14-element dihedral group D7.

Original entry on oeis.org

0, 0, 0, 1, 9, 55, 286, 1365, 6188, 27132, 116281, 490337, 2043275, 8439210, 34621041, 141290436, 574274008, 2326683921, 9402807817, 37923176863, 152705590518, 614111175965, 2467123420524, 9903167265124, 39725253489545
Offset: 1

Views

Author

Jamaine Paddyfoot and John W. Layman, Jul 24 2002

Keywords

Examples

			The 9 words of length 9 are ssssssstt, sssssstts, sssssttss, ssssttsss, sssttssss, ssttsssss, sttssssss, ttsssssss, tssssssst. - _Sean A. Irvine_, Oct 31 2024
		

References

  • H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, Fourth Edition, (p.134).

Crossrefs

Cf. A072266.
Bisection of A377573.

Formula

a(n) = 9*a(n-1) - 26*a(n-2) + 25*a(n-3) - 4*a(n-4).
g.f.: x^4 / ((1 - 4*x)*(1 - 5*x + 6*x^2 - x^3)). - Colin Barker, Feb 24 2017
28*a(n) = 4^n -4*( 2*A005021(n) -9*A005021(n-1) +11*A005021(n-2) ). - R. J. Mathar, Nov 05 2024
Previous Showing 11-20 of 20 results.