cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 60 results. Next

A077500 Primes of the form 2^r*p^s + 1, where p is an odd prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41, 47, 53, 59, 73, 83, 89, 97, 101, 107, 109, 113, 137, 149, 163, 167, 173, 179, 193, 197, 227, 233, 251, 257, 263, 269, 293, 317, 347, 353, 359, 383, 389, 401, 433, 449, 467, 479, 487, 503, 509, 557, 563, 569, 577, 587
Offset: 1

Views

Author

Amarnath Murthy, Nov 07 2002

Keywords

Comments

Primes p such that p-1 has at most one odd prime divisor.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[110]],Length[Select[FactorInteger[#-1] [[All, 1]], OddQ]]<2&] (* Harvey P. Dale, Oct 09 2017 *)

Extensions

Corrected and extended by Sascha Kurz, Jan 04 2003

A111345 Pierpont 5-almost primes. 5-almost primes of form (2^K)*(3^L)+1.

Original entry on oeis.org

4375, 19684, 7077889, 7962625, 34012225, 100663297, 129140164, 452984833, 459165025, 544195585, 644972545, 918330049, 5159780353, 7346640385, 8589934593, 13947137605, 14495514625, 23219011585, 27518828545, 28991029249
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 4375 = (2^1)*(3^7)+1 = 5 * 5 * 5 * 5 * 7.
a(2) = 19684 = (2^0)*(3^9)+1 = 2 * 2 * 7 * 19 * 37.
a(3) = 7077889 = (2^18)*(3^3)+1 = 7 * 13 * 13 * 31 * 193 (prime factors each have all odd digits).
a(4) = 7962625 = (2^15)*(3^5)+1 = 5 * 5 * 5 * 11 * 5791 (again, coincidentally, prime factors each have all odd
digits).
a(7) = 129140164 = (2^0)*(3^17)+1 = 2 * 2 * 103 * 307 * 1021.
a(15) = 8589934593 = (2^33)*(3^0)+1 = 3 * 3 * 67 * 683 * 20857.
a(21) = 34359738369 = (2^35)*(3^0)+1 = 3 * 11 * 43 * 281 * 86171.
a(30) = 793437161473 = (2^11)*(3^18)+1 = 11 * 11 * 11 * 43 * 13863281.
a(32) = 847288609444 = (2^0)*(3^25)+1 = 2 * 2 * 61 * 151 * 22996651.
a(47) = 68630377364884 = (2^0)*(3^29)+1 = 2 * 2 * 523 * 6091 * 5385997.
a(48) = 70368744177665 = (2^46)*(3^0)+1 = 5 * 277 * 1013 * 1657 * 30269.
a(81) = 50031545098999708 = (2^0)*(3^35)+1 = 2 * 2 * 61 * 547 * 374857981681.
a(89) = 144115188075855873 = (2^57)*(3^0)+1 = 3 * 3 * 571 * 174763 * 160465489.
a(99) = 450283905890997364 = (2^0)*(3^37)+1 = 2 * 2 * 18427 * 107671 * 56737873.
a(113) = 4611686018427387905 = (2^62)*(3^0)+1 = 5 * 5581 * 8681 * 49477 * 384773.
		

Crossrefs

Intersection of A014614 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • PARI
    list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==5, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Formula

a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 5.

Extensions

Extended by Ray Chandler, Nov 08 2005

A111346 Pierpont 6-almost primes. 6-almost primes of form (2^K)*(3^L)+1.

Original entry on oeis.org

14348908, 134217729, 1073741825, 139314069505, 231928233985, 264479053825, 282429536482, 618475290625, 705277476865, 3570467226625, 4398046511105, 8349416423425, 21134460321793, 35664401793025, 91507169819845
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 14348908 = (2^0)*(3^15)+1 = 2 * 2 * 7 * 31 * 61 * 271.
a(2) = 134217729 = (2^27)*(3^0)+1 = 3 * 3 * 3 * 3 * 19 * 87211.
a(3) = 1073741825 = (2^30)*(3^0)+1 = 5 * 5 * 13 * 41 * 61 * 1321.
a(4) = 139314069505 = (2^18)*(3^12)+1 = 5 * 13 * 17 * 61 * 337 * 6133.
a(100) = 151115727451828646838273 = (2^77)*(3^0)+1 = 3 * 43 * 617 * 683 * 78233 * 35532364099.
a(127) = 9671406556917033397649409 = (2^83)*(3^0)+1 = 3 * 499 * 1163 * 2657 * 155377 * 13455809771.
a(153) = 523347633027360537213511522 = (2^0)*(3^56)+1 = 2 * 17 * 113 * 193 * 19489 * 36214795668330833.
a(169) = 2475880078570760549798248449 = (2^91)*(3^0)+1 = 3 * 43 * 2731 * 224771 * 1210483 * 25829691707.
		

Crossrefs

Intersection of A046306 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • PARI
    list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==6, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Formula

a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 6.

Extensions

Extended by Ray Chandler, Nov 08 2005

A112797 Pierpont 3-almost primes. 3-almost primes of form (2^K)*(3^L)+1.

Original entry on oeis.org

28, 244, 325, 385, 730, 1025, 1729, 2188, 5185, 6562, 7777, 16385, 26245, 36865, 46657, 49153, 55297, 82945, 93313, 221185, 354295, 419905, 531442, 559873, 589825, 663553, 708589, 884737, 1119745, 1572865, 1594324, 1889569, 2985985
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2005

Keywords

Examples

			a(1) = 28 = (2^0)*(3^3)+1 = 2 * 2 * 7.
a(2) = 244 = (2^0)*(3^5)+1 = 2 * 2 * 61.
a(3) = 325 = (2^2)*(3^4)+1 = 5 * 5 * 13.
a(4) = 385 = (2^7)*(3^1)+1 = 5 * 7 * 11.
a(11) = 7777 = (2^5)*(3^5)+1 = 7 * 11 * 101.
a(115) = 94143178828 = (2^0)*(3^23)+1 = 2 * 2 * 23535794707.
a(119) = 137438953473 = (2^37)*(3^0)+1 = 3 * 1777 * 25781083.
a(196) = 281474976710657 = (2^48)*(3^0)+1 = 193 * 65537 * 22253377.
		

Crossrefs

Intersection of A014612 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.

Programs

  • Mathematica
    Take[Select[2^#[[1]] 3^#[[2]] + 1 & /@ Tuples[Range[0, 20], 2],
    PrimeOmega[ #]  ==  3 &] // Union, 40] (* Harvey P. Dale, Jan 02 2021 *)
  • PARI
    list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==3, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Formula

a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 3.

Extensions

Extended by Ray Chandler, Nov 08 2005

A002200 Primes of the form 2^q*3^r*5^s + 1.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 61, 73, 97, 101, 109, 151, 163, 181, 193, 241, 251, 257, 271, 401, 433, 487, 541, 577, 601, 641, 751, 769, 811, 1153, 1201, 1297, 1459, 1601, 1621, 1801, 2161, 2251, 2593, 2917, 3001, 3457, 3889, 4001, 4051, 4801, 4861
Offset: 1

Views

Author

Keywords

References

  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 53.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    K:=10^7;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;
    B:=List(A,i->Factors(i-1));;
    C:=[];;  for i in B do if Elements(i)=[2] or Elements(i)=[2,3]  or Elements(i)=[2,5] or Elements(i)=[2,3,5]  then Add(C,Position(B,i)); fi; od;
    A002200:=Concatenation([2],List(C,i->A[i])); # Muniru A Asiru, Sep 10 2017
  • Magma
    [p: p in PrimesUpTo(5000) | forall{d: d in PrimeDivisors(p-1) | d le 5}]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    up=10^6; a=1; Sort[Reap[While[ aGiovanni Resta, Jul 18 2017 *)
  • PARI
    { default(primelimit, 16600000); n=0; forprime (p=2, 16600000, m=p-1; p2=p3=p5=0; s=m; r=0; while(r==0, q=s\2; r=s-2*q; s=q; if(r==0, p2++)); s=m; r=0; while(r==0, q=s\3; r=s-3*q; s=q; if(r==0, p3++)); s=m; r=0; while(r==0, q=s\5; r=s-5*q; s=q; if(r==0, p5++)); if (m == 2^p2*3^p3*5^p5, n++; write("b002200.txt", n, " ", p)); if (n >= 200, break); ); } \\ Harry J. Smith, May 25 2009
    
  • PARI
    { n=5000; cache=10^5; v=vector(cache); x2=2; x3=3; x5=5; i=j=k=1; v[1]=1; for(m=2,cache,v[m]=t=min(x2,min(x3,x5)); if(x2==t,x2=2*v[i++]); if(x3==t,x3=3*v[j++]); if(x5==t,x5=5*v[k++]);); i=0; c=0; while(cJean-Marie Madiot, Jul 17 2017
    

Extensions

Better description and more terms from Vladeta Jovovic, May 08 2003

A122260 Multiplicative closure of Pierpont primes.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 32, 34, 35, 36, 37, 38, 39, 40, 42, 45, 48, 49, 50, 51, 52, 54, 56, 57, 60, 63, 64, 65, 68, 70, 72, 73, 74, 75, 76, 78, 80, 81, 84, 85, 90, 91, 95, 96, 97, 98, 100, 102, 104, 105, 108
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 29 2006

Keywords

Comments

If u and v are terms then also u*v is a term; A005109 is the generating subsequence;
A122261(a(n)) = 1;
A122254 is a subsequence: a(n) = A122254(n) = A048737(n) for n < 22.

Examples

			15 = 3 * 5 is a term since both 3 and 5 are Pierpont primes.
		

Crossrefs

Programs

  • Mathematica
    mx = 108; Select[Range@mx, Complement[FactorInteger[#][[All, 1]], Select[Prime@Range@mx, Max[FactorInteger[# - 1][[All, 1]]] < 5 &], {1}] == {} &] (* Ivan Neretin, Aug 13 2015 *)
  • PARI
    sm3(n)=n>>=valuation(n,2);n==3^valuation(n,3)
    is(n)=my(f=factor(n)[,1]);for(i=1,#f,if(!sm3(f[i]),return(0)));1 \\ Charles R Greathouse IV, Feb 21 2013

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A005109} p/(p-1) = 5.80109266072985445612... - Amiram Eldar, Sep 27 2020

A122261 Characteristic function of numbers having only factors that are Pierpont primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 29 2006

Keywords

Examples

			For n = 11 = 11^1, 11 is not a Pierpoint prime because 11-1 = 10 = 2*5 has a prime factor larger than 3, thus a(11) = 0.
For n = 25 = 5^2, 5 is a Pierpoint prime as 5-1 = 4 = 2^2 does not have any prime factors larger than 3, thus a(25) = 1.
		

Crossrefs

Cf. A005109, A065333, A122255, A122262 (partial sums).
Characteristic function of A122260.

Programs

  • Mathematica
    Block[{nn = 105, s}, s = Select[Sort@ Flatten@ Table[2^i*3^j + 1, {i, 0, Log2@ nn}, {j, 0, Log[3, nn/2^i]}] , PrimeQ]; Table[Boole[n == 1] + Boole@ AllTrue[FactorInteger[n][[All, 1]], MemberQ[s, #] &], {n, nn}]] (* Michael De Vlieger, Aug 23 2017, after Robert G. Wilson v at A005109 *)
  • PARI
    A065333(n) = ((3^valuation(n, 3)<Charles R Greathouse IV, Aug 21 2011
    A122261(n) = factorback(apply(p -> A065333(p-1), (factor(n)[, 1]))); \\ Antti Karttunen, Aug 22 2017

Formula

Multiplicative with a(p) = A065333(p-1), for p prime.
a(n) = if n=1 then 0 else A122262(n) - A122262(n-1).
a(A122260(n)) = 1.
a(n) = A122255(n) for n < 25.

Extensions

An unnecessary part removed from the formula and the Example section added by Antti Karttunen, Aug 22 2017

A051913 Numbers k such that phi(k)/phi(phi(k)) = 3.

Original entry on oeis.org

7, 9, 13, 14, 18, 19, 21, 26, 27, 28, 35, 36, 37, 38, 39, 42, 45, 52, 54, 56, 57, 63, 65, 70, 72, 73, 74, 76, 78, 81, 84, 90, 91, 95, 97, 104, 105, 108, 109, 111, 112, 114, 117, 119, 126, 130, 133, 135, 140, 144, 146, 148, 152, 153, 156, 162, 163, 168, 171, 180, 182
Offset: 1

Views

Author

J. H. Conway and Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Dec 17 1999

Keywords

Comments

Also numbers k such that phi(k) = 2^a*3^b with a, b > 0.
Also numbers k such that a regular k-gon can be constructed using conics but not with merely a compass and straightedge.
"Constructed using conics" means that one can draw any conic, once its focus, its vertex and a point on its directrix are constructed. Points at intersections are thereby constructed. (Videla's definition is slightly more complicated, but equivalent.) One can use parabolas to take cube roots; hyperbolas yield trisected angles. - Don Reble, Apr 23 2007

Examples

			Phi(999) = Phi(3*3*3*37) = 648 = 8*81.
		

References

  • George E. Martin, Geometric Constructions, Springer, 1997, p. 140.

Crossrefs

Programs

  • Magma
    [n: n in [1..200] | EulerPhi(n)/EulerPhi(EulerPhi(n)) eq 3]; // Vincenzo Librandi, Apr 17 2015
    
  • Mathematica
    lf[x_] := Length[FactorInteger[x]] eu[x_] := EulerPhi[x] Do[s=lf[eu[n]]; If[Equal[s, 2]&&Equal[Mod[eu[n], 6], 0], Print[n]], {n, 1, 1000}] (* Labos Elemer, Dec 28 2001 *)
    f[n_] := Block[{m = n}, If[m > 0, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; m == 1]; fQ[n_] := Block[{pff = Select[ FactorInteger[n], #[[1]] > 3 &]}, pf = Flatten[{2, Table[ #[[1]], {1}] & /@ pff}]; pfe = Union[ Flatten[{1, Table[ #[[2]], {1}] & /@ pff}]]; If[ Union[f /@ (pf - 1)] == {True} && pfe == {1} && !IntegerQ[ Log[2, EulerPhi[ n]]], True, False]]; Select[ Range[184], fQ[ # ] &] (* Robert G. Wilson v, Apr 05 2005 *)
    Select[Range[200],EulerPhi[#]/EulerPhi[EulerPhi[#]]==3&] (* Harvey P. Dale, Jul 11 2025 *)
  • Python
    from itertools import count, islice
    from sympy import primefactors, totient
    def A051913_gen(): # generator of terms
        yield from filter(lambda n: primefactors(totient(n)) == [2,3], count(1))
    A051913_list = list(islice(A051913_gen(),30)) # Chai Wah Wu, Apr 02 2025

Formula

Numbers k of the form 2^a*3^b*p*q*r*..., where p, q, r, ... are distinct primes of the form 2^x*3^y + 1 (i.e., belong to A005109) and phi(k) is not a power of 2 [Videla]. - Robert G. Wilson v, Apr 05 2005

Extensions

Additional comments from Labos Elemer, Dec 28 2001
Additional comments from Benoit Cloitre, Jan 26 2002
Edited by N. J. A. Sloane, Apr 21 2007
Entries checked by Don Reble, Apr 23 2007

A077499 Primes of the form 2^r*11^s + 1.

Original entry on oeis.org

2, 3, 5, 17, 23, 89, 257, 353, 1409, 2663, 30977, 65537, 170369, 495617, 5767169, 23068673, 59969537, 82458113, 453519617, 3429742097, 4715895383, 15352201217, 39909726209, 1857616347137, 45732811767809, 96757023244289
Offset: 1

Views

Author

Amarnath Murthy, Nov 07 2002

Keywords

Comments

Primes p such that p-1 has at most one odd prime divisor 11.

Crossrefs

Extensions

More terms from Ray Chandler, Aug 02 2003

A122259 Primes p such that p - 1 is not 3-smooth.

Original entry on oeis.org

11, 23, 29, 31, 41, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 157, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 29 2006

Keywords

Crossrefs

Programs

  • Mathematica
    smooth3Q[n_] := n == 2^IntegerExponent[n, 2]*3^IntegerExponent[n, 3];
    Select[Prime[Range[100]], !smooth3Q[#-1]&] (* Jean-François Alcover, Oct 17 2021 *)
  • PARI
    is(n)=my(q=n-1); q>>=valuation(q,2); q/=3^valuation(q,3); q>1 && isprime(n) \\ Charles R Greathouse IV, Oct 29 2018

Formula

A122257(a(n)) = 0;
A006530(a(n) - 1) > 3.
a(n) ~ n log n. - Charles R Greathouse IV, Oct 29 2018
Previous Showing 31-40 of 60 results. Next