cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 60 results.

A175257 a(n) is the smallest prime p such that 2^(p-1) == 1 (mod a(1)*...*a(n-1)*p).

Original entry on oeis.org

3, 5, 13, 37, 73, 109, 181, 541, 1621, 4861, 9721, 19441, 58321, 87481, 379081, 408241, 2041201, 2449441, 7348321, 14696641, 22044961, 95528161, 382112641, 2292675841, 8024365441, 40121827201, 481461926401, 722192889601, 2888771558401, 7944121785601, 55608852499201, 111217704998401, 889741639987201, 1779483279974401
Offset: 1

Views

Author

Manuel Valdivia, Mar 15 2010

Keywords

Comments

Conjecture: a(n) is the smallest integer k > 1 such that 2^(k-1) == 1 (mod a(0)*...*a(n-1)*k), with a(0) = 1. - Thomas Ordowski, Mar 13 2019
Either a(n) > a(n-1), or a(n) = a(n-1) is a Wieferich prime (A001220). - Max Alekseyev, Sep 29 2024

Crossrefs

Programs

  • Mathematica
    i=1;Do[p=Prime[n];If[Mod[2^(p-1)-1,p*i]==0,Print[p];i=p*i],{n,2,78498}]
  • PARI
    findprime(prd) = {forprime(p=2, , if (Mod(2, p*prd)^(p-1) == 1, return (p)););}
    lista(nn) = {my(prd = 1, na); for (n=1, nn, na = findprime(prd); print1(na, ", "); prd *= na;);} \\ Michel Marcus, Mar 14 2019
    
  • PARI
    { a175257_first_terms(N=1000) = my(P,L,t); P=[3]; L=2; for(n=#P,N, print(n," ",P[n]); forstep(p=P[n],oo,Mod(1,L), if(p==P[n], if(Mod(2,p^2)^(p-1)==1, error("Wieferich prime!"), next)); if(ispseudoprime(p), P=concat(P,[p]); t=Mod(2,p)^L; fordiv((p-1)\L,d, if(t^d==1, L*=d; break)); break))); P; } \\ Max Alekseyev, Sep 29 2024

Extensions

a(17)-a(26) from Amiram Eldar, Feb 03 2019
Name corrected by Thomas Ordowski, Mar 13 2019
a(27) from Hans Havermann, Mar 29 2019
Eliminated a(0)=1 in the definition (empty products equal 1). - R. J. Mathar, Jun 19 2021
Terms a(28) onward from Max Alekseyev, Sep 29 2024

A284037 Primes p such that p-1 and p+1 have two distinct prime factors.

Original entry on oeis.org

11, 13, 19, 23, 37, 47, 53, 73, 97, 107, 163, 193, 383, 487, 577, 863, 1153, 2593, 2917, 4373, 8747, 995327, 1492993, 1990657, 5308417, 28311553, 86093443, 6879707137, 1761205026817, 2348273369087, 5566277615617, 7421703487487, 21422803359743, 79164837199873
Offset: 1

Views

Author

Giuseppe Coppoletta, Mar 28 2017

Keywords

Comments

Either p-1 or p+1 must be of the form 2^i * 3^j, since among three consecutive numbers exactly one is a multiple of 3. - Giovanni Resta, Mar 29 2017
Subsequence of A219528. See the previous comment. - Jason Yuen, Mar 08 2025

Examples

			7 is not a term because n + 1 = 8 has only one prime factor.
23 is a term because it is prime and n - 1 = 22 has two distinct prime factors (2, 11) and n + 1 = 24 has two distinct prime factors (2, 3).
43 is not a term because n - 1 = 42 has three distinct prime factors (2, 3, 7).
		

Crossrefs

Programs

  • Maple
    N:= 10^20: # To get all terms <= N
    Res:= {}:
    for i from 1 to ilog2(N) do
      for j from 1 to floor(log[3](N/2^i)) do
        q:= 2^i*3^j;
        if isprime(q-1) and nops(numtheory:-factorset((q-2)/2^padic:-ordp(q-2,2)))=1 then Res:= Res union {q-1} fi;
        if isprime(q+1) and nops(numtheory:-factorset((q+2)/2^padic:-ordp(q+2,2)))=1 then Res:= Res union {q+1} fi
    od od:
    sort(convert(Res,list)); # Robert Israel, Apr 16 2017
  • Mathematica
    mx = 10^30; ok[t_] := PrimeQ[t] && PrimeNu[t-1]==2==PrimeNu[t+1]; Sort@ Reap[Do[ w = 2^i 3^j; Sow /@ Select[ w+ {1,-1}, ok], {i, Log2@ mx}, {j, 1, Log[3, mx/2^i]}]][[2, 1]] (* terms up to mx, Giovanni Resta, Mar 29 2017 *)
  • PARI
    isok(n) = isprime(n) && (omega(n-1)==2) && (omega(n+1)==2); \\ Michel Marcus, Apr 17 2017
  • Sage
    omega=sloane.A001221; [n for n in prime_range(10^6) if 2==omega(n-1)==omega(n+1)]
    
  • Sage
    sorted([2^i*3^j+k for i in (1..40) for j in (1..20) for k in (-1,1) if is_prime(2^i*3^j+k) and sloane.A001221(2^i*3^j+2*k)==2])
    

Formula

A001221(a(n)) = 1 and A001221(a(n) - 1) = A001221(a(n) + 1) = 2.

Extensions

a(33)-a(34) from Giovanni Resta, Mar 29 2017

A291049 Primes of the form 2^r * 17^s + 1.

Original entry on oeis.org

2, 3, 5, 17, 137, 257, 65537, 157217, 295937, 557057, 1336337, 96550277, 1212153857, 2281701377, 5473632257, 395469930497, 1401249857537, 2637646790657, 4964982194177, 28572702478337, 1271035441709057, 38280596832649217, 1872540629620228097, 6634884445436379137
Offset: 1

Views

Author

Muniru A Asiru, Sep 15 2017

Keywords

Comments

Primes of the forms a^r * b^s + 1 where (a, b) = (2,1), (2,3), (2,5), (2,7), (2,11) and (2,13) are A092506, A005109, A077497, A077498, A077499 and A173236.
Fermat prime exponents r are 0, 1, 2, 4, 8, 16.
For n > 2, all terms are congruent to 5 (mod 6).
Also, these are prime numbers p for which (p*34^p)/(p-1) is an integer.

Examples

			With n = 1, a(1) = 2^0 * 17^0 + 1 = 2.
With n = 5, a(5) = 2^3 * 17^1 + 1 = 137.
list of (r,s): (0,0), (1,0), (2,0), (4,0), (3,1), (8,0), (16,0), (5,3), (10,2), (15,1), (4,4), (2,6).
		

Crossrefs

Cf. Sequences of primes of form 2^n * q^u + 1: A092506 (q=1), A005109 (q=3), A077497 (q=5), A077498 (q=7), A077499 (q=11), A173236 (q=13).

Programs

  • GAP
    K:=26*10^7+1;; # to get all terms <= K.
    A:=Filtered(Filtered([1,3..K],i-> i mod 6=5),IsPrime);;    I:=[17];;
    B:=List(A,i->Elements(Factors(i-1)));;
    C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));;
    A291049:=Concatenation([2,3],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
    
  • Maple
    N:= 10^20: # to get all terms <= N+1
    S:= NULL:
    for r from 0 to ilog2(N) do
      for s from 0 to floor(log[17](N/2^r)) do
        p:= 2^r*17^s +1;
        if isprime(p) then
         S:= S, p
        fi
    od od:
    sort([S]); # Robert Israel, Sep 26 2017
  • Mathematica
    With[{nn = 10^19, q = 17}, Select[Sort@ Flatten@ Table[2^i*q^j + 1, {i, 0, Log[2, nn]}, {j, 0, Log[q, nn/2^i]}], PrimeQ]] (* Michael De Vlieger, Sep 18 2017, after Robert G. Wilson v at A005109 *)
  • PARI
    lista(nn) = my(t, v=List([])); for(r=0, logint(nn, 2), t=2^r; for(s=0, logint(nn\t, 17), if(isprime(t+1), listput(v, t+1)); t*=17)); Vec(vecsort(v)) \\ Jinyuan Wang, Jun 26 2022

A375906 Positions of primes in the sequence of numbers of the form 2^t * 3^u + 1 (A055600).

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 10, 14, 18, 20, 21, 24, 25, 28, 32, 33, 35, 38, 42, 43, 44, 51, 52, 54, 55, 68, 70, 75, 76, 87, 91, 95, 107, 108, 114, 122, 128, 134, 137, 138, 139, 142, 146, 150, 154, 156, 162, 176, 177, 187, 193, 198, 206, 214, 232, 234, 237, 242, 246, 248, 250
Offset: 1

Views

Author

Amiram Eldar, Sep 02 2024

Keywords

Crossrefs

Programs

  • Mathematica
    With[{lim = 10^10}, Position[Sort@ Flatten@ Table[2^i*3^j + 1, {i, 0, Log2[lim]}, {j, 0, Log[3, lim/2^i]}], _?PrimeQ] // Flatten]
  • PARI
    lista(lim) = {my(s = List()); for(i = 0, logint(lim, 2), for(j = 0, logint(lim >> i, 3), listput(s, 2^i * 3^j + 1))); s = Set(s); for(i = 1, #s, if(isprime(s[i]), print1(i, ", ")));}

Formula

A055600(a(n)) = A003586(a(n)) + 1 = A005109(n).

A086983 Primes of the form 2^r*p^s - 1, where p is an odd prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 43, 47, 53, 61, 67, 71, 73, 79, 97, 103, 107, 127, 151, 157, 163, 191, 193, 199, 211, 223, 241, 271, 277, 283, 313, 331, 337, 367, 383, 397, 421, 431, 457, 463, 487, 499, 523, 541, 547, 577, 607, 613, 631, 647, 661, 673
Offset: 1

Views

Author

Ray Chandler, Aug 02 2003

Keywords

Comments

Primes p such that p+1 has at most one odd prime divisor.

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime, [$3..(N+1)/2]):
    sort(convert(select(isprime, {2,seq(seq(seq(2^r*p^s-1, r = 1 .. ilog2((N+1)/p^s)),s=0..floor(log[p]((N+1)/2))),p=Primes)}),list)); # Robert Israel, Jun 13 2018

A113412 Number of Pierpont primes less than 10^(2^n).

Original entry on oeis.org

4, 10, 25, 58, 125, 250, 505, 1020, 2075, 4227, 8597, 17213
Offset: 0

Views

Author

Eric W. Weisstein, Oct 29 2005

Keywords

References

  • Computed by Chris Caldwell.

Crossrefs

Extensions

a(10) from Eric W. Weisstein, Nov 01 2005
a(11) from Donovan Johnson, Feb 13 2010

A114991 Primes of the form 2^a * 3^b * 5^c + 1 for positive a, b, c.

Original entry on oeis.org

31, 61, 151, 181, 241, 271, 541, 601, 751, 811, 1201, 1621, 1801, 2161, 2251, 3001, 4051, 4801, 4861, 6481, 7681, 8101, 8641, 9001, 9601, 9721, 11251, 14401, 15361, 19441, 21601, 21871, 22501, 23041, 24001, 32401, 33751, 36451, 37501, 43201, 54001, 57601, 58321
Offset: 1

Views

Author

Jonathan Vos Post, Feb 22 2006

Keywords

Examples

			a(1) = 31 = 2^1 * 3^1 * 5^1 + 1.
a(2) = 61 = 2^2 * 3^1 * 5^1 + 1.
a(3) = 151 = 2^1 * 3^1 * 5^2 + 1.
a(4) = 181 = 2^2 * 3^2 * 5^1 + 1.
Values include 30000001 = 2^7 * 3^1 * 5^7 + 1, 90000000001 = 2^9 * 3^2 * 5^9 + 1.
		

Crossrefs

A114992 Primes of the form 2^a * 5^b * 7^c + 1 for positive a, b, c.

Original entry on oeis.org

71, 281, 491, 701, 2801, 4481, 7001, 7841, 12251, 13721, 17921, 28001, 34301, 54881, 70001, 78401, 85751, 122501, 125441, 137201, 168071, 240101, 280001, 286721, 437501, 490001
Offset: 1

Views

Author

Jonathan Vos Post, Feb 22 2006

Keywords

Comments

Since the factors of 2 and 5 are the same as a factor of 10, a subset of A030430 "primes of form 10n+1." There are subsequences such as 71, 701, 7001, 70001, 700001, 700000001, 7000000001; 281, 2801, 280001, 2800001; 491, 490001, 4900001, 490000001, 49000000001, 490000000001.

Examples

			a(1) = 71 = 2^1 * 5^1 * 7^1 + 1.
a(2) = 281 = 2^3 * 5^1 * 7^1 + 1.
a(3) = 491 = 2^1 * 5^1 * 7^2 + 1.
a(4) = 701 = 2^2 * 5^2 * 7^1 + 1.
a(5) = 2801 = 2^4 * 5^2 * 7^1 + 1.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=30},Take[Select[Union[2^#[[1]]*5^#[[2]]*7^#[[3]]+1&/@Tuples[ Range[nn],3]],PrimeQ],nn]] (* Harvey P. Dale, Aug 24 2012 *)
  • PARI
    find(lim)=my(v=List(), t); for(b=1,log(lim\14)\log(5), for(c=1,log(lim\2\5^b)/log(7), t=2*5^b*7^c; while(tCharles R Greathouse IV, Feb 17 2011

Extensions

Corrected by T. D. Noe, Nov 15 2006

A122262 Number of numbers having only factors that are Pierpont primes.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 20, 21, 22, 23, 24, 25, 25, 26, 26, 27, 27, 28, 29, 30, 31, 32, 33, 34, 34, 35, 35, 35, 36, 36, 36, 37, 38, 39, 40, 41, 41, 42, 42, 43, 44, 44, 44, 45, 45, 45, 46, 47, 48, 48, 48, 49, 49, 50, 50, 51
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 29 2006

Keywords

Crossrefs

Partial sums of A122261.
Cf. A005109.

Programs

  • Mathematica
    smooth3Q[n_] := Times @@ ({2, 3}^IntegerExponent[n, {2, 3}]) == n; s[n_] := Boole@ AllTrue[FactorInteger[n][[;;, 1]]-1, smooth3Q]; s[1] = 1; Accumulate[Table[s[n], {n, 1, 100}]] (* Amiram Eldar, May 14 2025 *)

A137990 Least prime p of the form c*3^n+1 with c not divisible by 3.

Original entry on oeis.org

2, 7, 19, 109, 163, 487, 1459, 17497, 52489, 39367, 472393, 4960117, 5314411, 102036673, 19131877, 57395629, 86093443, 258280327, 3874204891, 23245229341, 90656394427, 585779779369, 251048476873, 9790890598009, 4518872583697
Offset: 0

Views

Author

Andrew V. Sutherland, May 01 2008

Keywords

Comments

a(n) is also the least prime such that 3^(n+1), but not 3^(n+2), divides 2^(a(n)-1)-1.

Examples

			a(8)=52489 because 52489=8*3^8+1 is prime and no smaller prime p has p-1 divisible by 3^8 but not 3^9.
		

Crossrefs

Previous Showing 51-60 of 60 results.