cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 116 results. Next

A279619 Expansion of g.f. of A002652 in powers of the g.f. of A279618.

Original entry on oeis.org

1, 2, 22, 336, 6006, 117348, 2428272, 52303680, 1160427510, 26337699740, 608642155660, 14272471122560, 338764038330480, 8123136091556640, 196484811079765440, 4788469475873867520, 117465323079289162230, 2898183118626011393100
Offset: 1

Views

Author

Lynette O'Brien, Dec 15 2016

Keywords

Comments

G.f. is the square root of the g.f. for A183204.
This sequence is c_n in Theorem 6.1 in O'Brien's thesis.
Also see Conjecture 5.4 in Chan, Cooper and Sica's paper.

Examples

			G.f. = 1 + 2*x + 22*x^2 + 336*x^3 + 6006*x^4 + ....
		

References

  • L. O'Brien, Modular forms and two new integer sequences at level 7, Massey University, 2016.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Magma
    I:=[2, 22]; [1] cat [n le 2 select I[n] else ((26*n^2-39*n+15)* Self(n-1) + 3*(3*n-4)*(3*n-5)*Self(n-2))/n^2 : n in [1..50]] // G. C. Greubel, Jul 04 2018
  • Mathematica
    RecurrenceTable[{a[n+1] == ((26*n^2+13*n+2)*a[n] + 3*(3*n-1)*(3*n-2)*a[n-1])/ (n + 1)^2, a[-1] == 0, a[0] == 1}, a, {n, 0, 50}] (* G. C. Greubel, Jul 04 2018 *)
    CoefficientList[Series[Sqrt[7]*(1/(25 - 80*x + 24*Sqrt[1 - 27*x]*Sqrt[1+x]))^(1/4) * Hypergeometric2F1[1/12, 5/12, 1, 13824*x^7/(1 - 21*x + 8*x^2 + Sqrt[1 - 27*x] * (1 - 8*x)*Sqrt[1+x])^3], {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 04 2018 *)

Formula

(n+1)^2*a_7(n+1) = (26*n^2+13*n+2)*a_7(n) + 3*(3*n-1)*(3*n-2)*a_7(n-1), a(0)=1, a(-1)=0.
Conjecture: For any positive integer n and any prime p with p equiv. 0,1,2 or 4 modulo 7, a(n) equiv. a(n)=a(n_0)a(n_1)...a(n_r) modulo p, where n=n_0+n_1p+...n_rp^r is the base p representation of n.
Conjecture: a(n)~ C n^(-3/2) 27^n where C=0.0955223052681267146513079107870296256727946666510071798669948234917659...

A227454 Expansion of q * (f(q^9) / f(q))^3 in powers of q where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -3, 9, -22, 51, -108, 221, -429, 810, -1476, 2631, -4572, 7802, -13056, 21519, -34918, 55935, -88452, 138332, -213990, 327852, -497592, 748833, -1117692, 1655719, -2434938, 3556791, -5161808, 7445631, -10677096, 15226658, -21599469, 30485268, -42817788
Offset: 1

Views

Author

Michael Somos, Sep 22 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Zagier (2009) denotes the g.f. as t(z) in Case B which is associated with F(t) the g.f. of A006077.

Examples

			G.f. = q - 3*q^2 + 9*q^3 - 22*q^4 + 51*q^5 - 108*q^6 + 221*q^7 - 429*q^8 + ...
		

References

  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ -q^9] / QPochhammer[ -q])^3, {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^18 + A)^3 / (eta(x^2 + A)^3 * eta(x^9 + A) * eta(x^36 + A)))^3, n))}

Formula

Expansion of c(-q^3) / (-3 * b(-q)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q) * eta(q^4) * eta(q^18)^3 / (eta(q^2)^3 * eta(q^9) * eta(q^36)))^3 in powers of q.
Euler transform of period 36 sequence [ -3, 6, -3, 3, -3, 6, -3, 3, 0, 6, -3, 3, -3, 6, -3, 3, -3, 0, -3, 3, -3, 6, -3, 3, -3, 6, 0, 3, -3, 6, -3, 3, -3, 6, -3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/27) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A227498.
G.f. t(q) satisfies f(q) = F(t(q)) where F() is the g.f. of A006077 and f() is the g.f. of A226535
G.f.: x * (Product_{k>0} (1 - (-x)^(9*k)) / (1 - (-x)^k))^3.
a(n) = -(-1)^n * A121589(n).

A264541 a(n) = numerator(Jtilde3(n)).

Original entry on oeis.org

0, 1, 65, 13247, 704707, 660278641, 357852111131, 309349386395887, 240498440880062263, 148443546307725010253, 61760947097005048531, 13658972396318235617977, 723464275788899734058353751, 489812222050789870424202126629, 2614176630672654770175367214389, 204702102697072009862200307064701369
Offset: 0

Views

Author

Michel Marcus, Nov 17 2015

Keywords

Comments

Jtilde3(n) are Apéry-like rational numbers that arise in the calculation of zetaQ(3), the spectral zeta function for the non-commutative harmonic oscillator using a Gaussian hypergeometric function.

Crossrefs

Cf. A002117 (zeta(3)), A260832 (Jtilde2), A264542 (denominators).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Mathematica
    Numerator[Table[-2*Sum[(-1)^k*Binomial[-1/2, k]^2*Binomial[n, k]*Sum[ 1/(Binomial[-1/2, j]^2*(2*j + 1)^3), {j, 0, k - 1}], {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Oct 24 2017 *)
  • PARI
    a(n) = numerator(-2*sum(k=0, n, (-1)^k*binomial(-1/2, k)^2*binomial(n, k)*sum(j=0, k-1, 1/(binomial(-1/2,j)^2*(2*j+1)^3))));

Formula

Jtilde3(n) = J3(n) - J3(0)*Jtilde2(n) (normalization).
4n^2*J3(n) - (8n^2-8n+3)*J3(n-1) + 4(n-1)^2*J3(n-2) = 2^n*(n-1)!/(2n-1)!! with J3(0)=7*zeta(3) and J3(1)=21*zeta(3)/4 + 1/2.

A264542 a(n) = denominator(Jtilde3(n)).

Original entry on oeis.org

1, 2, 96, 17280, 860160, 774144000, 408748032000, 347163328512000, 266621436297216000, 163172319013896192000, 67488959156767948800, 14865958099336613068800, 785345441564243189248819200, 530893518497428395932201779200, 2831432098652951444971742822400, 221701133324526098141287462993920000
Offset: 0

Views

Author

Michel Marcus, Nov 17 2015

Keywords

Comments

Jtilde3(n) are Apéry-like rational numbers that arise in the calculation of zetaQ(3), the spectral zeta function for the non-commutative harmonic oscillator using a Gaussian hypergeometric function.

Crossrefs

Cf. A002117 (zeta(3)), A260832 (Jtilde2), A264541 (numerators).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Mathematica
    Denominator[Table[-2*Sum[(-1)^k*Binomial[-1/2, k]^2*Binomial[n, k]* Sum[1/(Binomial[-1/2, j]^2*(2*j + 1)^3), {j, 0, k - 1}], {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Oct 23 2017 *)
  • PARI
    a(n) = denominator(-2*sum(k=0, n, (-1)^k*binomial(-1/2, k)^2*binomial(n, k)*sum(j=0, k-1, 1/(binomial(-1/2,j)^2*(2*j+1)^3))));

Formula

Jtilde3(n) = J3(n) - J3(0)*Jtilde2(n) (normalization).
4n^2*J3(n) - (8n^2-8n+3)*J3(n-1) + 4(n-1)^2*J3(n-2) = 2^n*(n-1)!/(2n-1)!! with J3(0)=7*zeta(3) and J3(1)=21*zeta(3)/4 + 1/2.

A143414 Apéry-like numbers for the constant 1/e: a(n) = (1/(n-1)!)*Sum_{k = 0..n-1} binomial(n-1,k)*(2*n-k)!.

Original entry on oeis.org

0, 2, 30, 492, 9620, 222630, 5989242, 184139480, 6377545512, 245868202890, 10446648201110, 485126443539012, 24449173476952380, 1329144227959100462, 77535552689576436210, 4831278674685354629040, 320262424087652686405712
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

This sequence satisfies the recursion (n-1)^2*a(n) - n^2*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1), which leads to a rapidly converging series for the constant 1/e: 1/e = 1/2 - 2 * Sum_{n >= 2} (-1)^n * n^2/(a(n)*a(n-1)).
Notice the striking resemblance to the theory of the Apéry numbers A(n) = A005258(n), which satisfy a similar recurrence relation n^2*A(n) - (n-1)^2*A(n-2) = (11*n^2-11*n+3)*A(n-1) and which appear in the series acceleration formula zeta(2) = 5*Sum_{n>=1} 1/(n^2*A(n)*A(n-1)). Compare with A143413 and A143415.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    a := n -> 1/(n-1)!*add (binomial(n-1,k)*(2*n-k)!,k = 0..n-1): seq(a(n),n = 0..19);
    # Alternative:
    A143414 := n -> `if`(n=0, 0, ((2*n)!/(n-1)!)*hypergeom([1-n], [-2*n], 1)):
    seq(simplify(A143414(n)), n = 0..16); # Peter Luschny, May 14 2020
  • Mathematica
    Table[(1/(n-1)!)*Sum[Binomial[n-1,k]*(2*n-k)!, {k,0,n-1}], {n,0,50}] (* G. C. Greubel, Oct 24 2017 *)
  • PARI
    for(n=0,25, print1((1/(n-1)!)*sum(k=0,n-1, binomial(n-1,k)*(2*n-k)!), ", ")) \\ G. C. Greubel, Oct 24 2017

Formula

a(n) = (1/(n-1)!)*Sum_{k = 0..n-1} binomial(n-1,k)*(2*n-k)!.
Recurrence relation: a(0) = 0, a(1) = 2, (n-1)^2*a(n) - n^2*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1), n >= 2.
Let b(n) denote the solution to this recurrence with initial conditions b(0) = -1, b(1) = 1. Then b(n) = A143413(n) = (1/(n-1)!)*Sum_{k = 0..n+1} (-1)^k*binomial(n+1,k)*(2*n-k)!.
The rational number b(n)/a(n) is equal to the Padé approximation to exp(x) of degree (n+1,n-1) evaluated at x = -1 and b(n)/a(n) -> 1/e very rapidly. For example, |b(100)/a(100) - 1/e| is approximately 2.177 * 10^(-437).
The identity a(n)*b(n-1) - a(n-1)*b(n) = (-1)^n *2*n^2 leads to rapidly converging series for the constants 1/e and e: 1/e = 1/2 - 2*Sum_{n >= 2} (-1)^n * n^2/(a(n)*a(n-1)) = 1/2 - 2*(2^2/(2*30) - 3^2/(30*492) + 4^2/(492*9620) - ...); e = 2 * Sum_{n >= 1} (-1)^n * n^2/(b(n)*b(n-1)) = 2*(1 + 2^2/(1*11) - 3^2/(11*181) + 4^2/(181*3539) - ...).
a(n) = (BesselK(n-1/2,1/2)-(1-2*n)*BesselK(n+1/2,1/2)) * exp(1/2)/(2*Pi^(1/2)). - Mark van Hoeij, Nov 12 2009
a(n) = ((2*n)!/(n-1)!)*hypergeom([1-n], [-2*n], 1) for n > 0. - Peter Luschny, May 14 2020
a(n) ~ 2^(2*n + 1/2) * n^(n+1) / exp(n - 1/2). - Vaclav Kotesovec, Jul 11 2021

A143415 Another sequence of Apery-like numbers for the constant 1/e: a(n) = 1/(n+1)!*Sum_{k = 0..n-1} C(n-1,k)*(2*n-k)!.

Original entry on oeis.org

0, 1, 5, 41, 481, 7421, 142601, 3288205, 88577021, 2731868921, 94969529101, 3675200329841, 156725471006105, 7302990263511541, 369216917569411601, 20130327811188977621, 1177435382675193700021, 73546210385434763486705
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

This sequence is a modified version of A143414.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    a := n -> 1/(n+1)!*add (binomial(n-1,k)*(2*n-k)!,k = 0..n-1): seq(a(n),n = 0..19);
    # Alternative:
    A143415 := n -> `if`(n=0, 0, ((2*n)!/(n+1)!)*hypergeom([1-n], [-2*n], 1)):
    seq(simplify(A143415(n)), n = 0..17); # Peter Luschny, May 14 2020
  • Mathematica
    Table[(1/(n+1)!)*Sum[Binomial[n-1,k]*(2*n-k)!, {k,0,n-1}], {n,0,50}] (* G. C. Greubel, Oct 24 2017 *)
  • PARI
    for(n=0,25, print1((1/(n+1)!)*sum(k=0,n-1, binomial(n-1,k)*(2*n-k)!), ", ")) \\ G. C. Greubel, Oct 24 2017

Formula

a(n) = 1/(n+1)!*sum {k = 0..n-1} C(n-1,k)*(2*n-k)!.
a(n) = 1/(n*(n+1))*A143414(n) for n > 0.
Recurrence relation: a(0) = 0, a(1) = 1, (n-1)*(n+1)*a(n) - (n-2)*n*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1) for n >= 2. 1/e = 1/2 - 2 * Sum_{n = 1..inf} (-1)^(n+1)/(n*(n+2)*a(n)*a(n+1)) = 1/2 - 2*[1/(3*1*5) - 1/(8*5*41) + 1/(15*41*481) - 1/(24*481*7421) + ...] .
Conjectural congruences: for r >= 0 and prime p, calculation suggests the congruences a(p^r*(p+1)) == a(p^r) (mod p^(r+1)) may hold.
a(n) = ((2*n)!/(n+1)!)*hypergeom([1-n], [-2*n], 1) for n > 0. - Peter Luschny, May 14 2020

A219692 a(n) = Sum_{j=0..floor(n/3)} (-1)^j C(n,j) * C(2j,j) * C(2n-2j,n-j) * (C(2n-3j-1,n) + C(2n-3j,n)).

Original entry on oeis.org

2, 6, 54, 564, 6390, 76356, 948276, 12132504, 158984694, 2124923460, 28877309604, 398046897144, 5554209125556, 78328566695736, 1114923122685720, 15999482238880464, 231253045986317814, 3363838379489630916
Offset: 0

Views

Author

Jason Kimberley, Nov 25 2012

Keywords

Comments

This sequence is s_18 in Cooper's paper.
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Every prime eventually divides some term of this sequence. - Amita Malik, Aug 20 2017

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Magma
    s_18 := func where C is Binomial;
    
  • Mathematica
    Table[Sum[(-1)^j*Binomial[n,j]*Binomial[2j,j]*Binomial[2n-2j, n-j]* (Binomial[2n-3j-1,n] +Binomial[2n-3j,n]), {j,0,Floor[n/3]}], {n,0,20}] (* G. C. Greubel, Oct 24 2017 *)
  • PARI
    {a(n) = sum(j=0,floor(n/3), (-1)^j*binomial(n,j)*binomial(2*j,j)* binomial(2*n-2*j,n-j)*(binomial(2*n-3*j-1,n) +binomial(2*n-3*j,n)))}; \\ G. C. Greubel, Apr 02 2019
    
  • Sage
    [sum((-1)^j*binomial(n,j)*binomial(2*j,j)*binomial(2*n-2*j,n-j)* (binomial(2*n-3*j-1,n)+binomial(2*n-3*j,n)) for j in (0..floor(n/3))) for n in (0..20)] # G. C. Greubel, Apr 02 2019

Formula

1/Pi
= 2*3^(-5/2) Sum {k>=0} (n a(n)/18^n) [Cooper, equation (42)]
= 2*3^(-5/2) Sum {k>=0} (n a(n)/A001027(n)).
G.f.: 1+hypergeom([1/8, 3/8],[1],256*x^3/(1-12*x)^2)^2/sqrt(1-12*x). - Mark van Hoeij, May 07 2013
Conjecture D-finite with recurrence: n^3*a(n) -2*(2*n-1)*(7*n^2-7*n+3)*a(n-1) +12*(4*n-5)*(n-1)* (4*n-3)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
a(n) ~ 3 * 2^(4*n + 1/2) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023

A260667 a(n) = (1/n^2) * Sum_{k=0..n-1} (2k+1)*S(k,n)^2, where S(k,x) denotes the polynomial Sum_{j=0..k} binomial(k,j)*binomial(x,j)*binomial(x+j,j).

Original entry on oeis.org

1, 37, 1737, 102501, 6979833, 523680739, 42129659113, 3572184623653, 315561396741609, 28807571694394593, 2701627814373536601, 259121323945378645947, 25330657454041707496017, 2516984276442279642274311, 253667099464270541534450025, 25884030861250181046253181349, 2670255662315910532447096232073
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 14 2015

Keywords

Comments

Conjecture: For k = 0,1,2,... define S(k,x):= Sum_{j=0..k} binomial(k,j)*binomial(x,j)*binomial(x+j,j).
(i) For any integer n > 0, the polynomial (1/n^2) * Sum_{k=0..n-1}(2k+1)*S(k,x)^2 is integer-valued (and hence a(n) is always integral).
(ii) Let r be 0 or 1, and let x be any integer. Then, for any positive integers m and n, we have the congruence
Sum_{k=0..n-1} (-1)^(k*r)*(2k+1)*S(k,x)^(2m) == 0 (mod n).
(iii) For any odd prime p, we have Sum_{k=0..p-1} S(k,-1/2)^2 == (-1/p)(1-7*p^3*B_{p-3}) (mod p^4), where (a/p) is the Legendre symbol, and B_0,B_1,B_2,... are Bernoulli numbers. Also, for any prime p > 3 we have Sum_{k=0..p-1} S(k,-1/3)^2 == p - (14/3)*(p/3)*p^3*B_{p-2}(1/3) (mod p^4), where B_n(x) denotes the Bernoulli polynomial of degree n; Sum_{k=0..p-1} S(k,-1/4)^2 == (2/p)*p - 26*(-2/p)*p^3*E_{p-3} (mod p^4), where E_0,E_1,E_2,... are Euler numbers; Sum_{k=0..p-1} S(k,-1/6)^2 == (3/p)*p - (155/12)*(-1/p)*p^3*B_{p-2}(1/3) (mod p^4).
Our conjecture is motivated by a conjecture of Kimoto and Wakayama which states that Sum_{k=0..p-1} S(k,-1/2)^2 == (-1/p) (mod p^3) for any odd prime p. The Kimoto-Wakayama conjecture was confirmed by Long, Osburn and Swisher in 2014.
For more related conjectures, see Sun's paper arXiv.1512.00712. - Zhi-Wei Sun, Dec 03 2015

Examples

			a(2) = 37 since (1/2^2) * Sum_{k=0..1} (2k+1)*S(k,2)^2 = (S(0,2)^2 + 3*S(1,2)^2)/4 = (1^2 + 3*7^2)/4 = 148/4 = 37.
G.f. = x + 37*x^2 + 1737*x^3 + 102501*x^4 + 6979833*x^5 + 523680739*x^6 + ...
		

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    # Implementing Mark van Hoeij's formula.
    c := n -> binomial(2*n, n)/(n + 1):
    h := n -> simplify(hypergeom([-n,-n,-n], [1,-2*n], 1)):
    b := n -> c(n)^2*((n+11)*(2+4*n)^2*h(n+1)^2-2*(n+1)*(11*n+16)*(1+2*n)*h(n)*h(n+1)-h(n)^2*(n+1)^3)/(25*(n+2)):
    a := n -> b(n-1): seq(a(n), n = 1..17);  # Peter Luschny, Nov 11 2022
  • Mathematica
    S[k_,x_]:=S[k,x]=Sum[Binomial[k,j]Binomial[x,j]Binomial[x+j,j],{j,0,k}]
    a[n_]:=a[n]=Sum[(2k+1)*S[k,n]^2,{k,0,n-1}]/n^2
    Do[Print[n," ",a[n]],{n,1,17}]

Formula

a(n) ~ phi^(10*n + 3) / (10 * Pi^2 * n^3), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 06 2021
Conjecture: a(p-1) == 1 (mod p^3) for all primes p >= 5. - Peter Bala, Aug 15 2022
a(n) = ((n+10)*A005258(n)^2 - (11*n+5)*A005258(n)*A005258(n-1) - n*A005258(n-1)^2)/(25*(n+1)). - Mark van Hoeij, Nov 11 2022

A262177 Decimal expansion of Q_5 = zeta(5) / (Sum_{k>=1} (-1)^(k+1) / (k^5 * binomial(2k, k))), a conjecturally irrational constant defined by an Apéry-like formula.

Original entry on oeis.org

2, 0, 9, 4, 8, 6, 8, 6, 2, 2, 0, 1, 0, 0, 3, 6, 9, 9, 3, 8, 5, 0, 2, 4, 9, 2, 9, 3, 7, 3, 2, 9, 4, 1, 6, 3, 0, 2, 9, 6, 7, 5, 8, 7, 4, 8, 5, 6, 7, 7, 8, 1, 8, 2, 7, 4, 0, 1, 2, 7, 5, 8, 7, 8, 3, 7, 4, 3, 8, 0, 0, 7, 8, 7, 6, 8, 4, 6, 8, 1, 5, 6, 3, 2, 0, 6, 0, 4, 4, 2, 3, 2, 0, 9, 0, 4, 3, 1, 3, 6, 9, 3, 1
Offset: 1

Views

Author

Jean-François Alcover, Sep 14 2015

Keywords

Comments

The similar constant Q_3 = zeta(3) / (Sum_{k>=1} (-1)^(k+1) / (k^3 * binomial(2k, k))) evaluates to 5/2.

Examples

			2.09486862201003699385024929373294163029675874856778182740127587837438...
		

Crossrefs

Cf. A013663.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Mathematica
    Q5 = Zeta[5]/Sum[(-1)^(k+1)/(k^5*Binomial[2k, k]), {k, 1, Infinity}]; RealDigits[Q5, 10, 103] // First
  • PARI
    zeta(5)/suminf(k=1, (-1)^(k+1)/(k^5*binomial(2*k,k))) \\ Michel Marcus, Sep 14 2015

Formula

Equals 2*zeta(5)/6F5(1,1,1,1,1,1; 3/2,2,2,2,2; -1/4).

A005430 Apéry numbers: n*C(2*n,n).

Original entry on oeis.org

0, 2, 12, 60, 280, 1260, 5544, 24024, 102960, 437580, 1847560, 7759752, 32449872, 135207800, 561632400, 2326762800, 9617286240, 39671305740, 163352435400, 671560012200, 2756930576400, 11303415363240, 46290177201840, 189368906734800, 773942488394400
Offset: 0

Views

Author

Keywords

Comments

Appears as diagonal in A003506. - Zerinvary Lajos, Apr 12 2006
The aerated sequence 1,0,2,0,12,0,60,0,... has e.g.f. 1+x*Bessel_I(1,2x). - Paul Barry, Mar 29 2010
Conjecture: the terms of the inverse binomial transform are 2*A132894(n). - R. J. Mathar, Oct 21 2012

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.25).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002011, A002457, A002736, A005258, A005259, A005429, 1/beta(n, n+1) in A061928.

Programs

  • GAP
    List([0..30], n-> n*Binomial(2*n,n)); # G. C. Greubel, Dec 09 2018
  • Magma
    [n*Binomial(2*n,n): n in [0..30]]; // G. C. Greubel, Dec 09 2018
    
  • Maple
    A005430 := n -> n*binomial(2*n, n);
  • Mathematica
    Table[n*Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, May 29 2015 *)
  • PARI
    a(n)=-(-1)^n*real(polcoeff(serlaplace(x^2*besselh1(1,2*x)),2*n)) \\ Ralf Stephan
    
  • Sage
    [n*binomial(2*n,n) for n in range(30)] # G. C. Greubel, Dec 09 2018
    

Formula

a(n) = A002011(n-1)/2 = 2 * A002457(n-1).
Sum_{n >= 1} 1/a(n) = Pi*sqrt(3)/9. - Benoit Cloitre, Apr 07 2002
G.f.: 2*x/sqrt((1-4*x)^3). - Marco A. Cisneros Guevara, Jul 25 2011
E.g.f.: a(n) = n!* [x^n] exp(2*x)*2*x*(BesselI(0, 2*x)+BesselI(1, 2*x)). - Peter Luschny, Aug 25 2012
D-finite with recurrence (-n+1)*a(n) + 2*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
G.f.: 2*x*(1-4*x)^(-3/2) = -G(0)/2 where G(k) = 1 - (2*k+1)/(1 - 2*x/(2*x - (k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
a(n-1) = Sum_{k=0..floor(n/2)} k*C(n,k)*C(n-k,k)*2^(n-2*k). - Robert FERREOL, Aug 29 2015
From Ilya Gutkovskiy, Jan 17 2017: (Start)
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(phi)/sqrt(5) = A086466, where phi is the golden ratio. (End)
1/a(n) = (-1)^n*Sum_{j=0..n-1} binomial(n-1,j)*Bernoulli(j+n)/(j+n) for n >= 1. See the Amdeberhan & Cohen link. - Peter Luschny, Jun 20 2017
1/a(n) = Sum_{k=0..n} (-1)^(k+1)*binomial(n,k)*HarmonicNumber(n+k) for n >= 1. - Peter Luschny, Aug 15 2017
Sum_{n>=1} x^n/a(n) = 2*sqrt(x/(4-x))*arcsin(sqrt(x)/2), for abs(x) < 4 (Adegoke et al., 2022, section 6, p. 11). - Amiram Eldar, Dec 07 2024

Extensions

More terms from James Sellers, May 01 2000
Previous Showing 41-50 of 116 results. Next