cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A202064 Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 4, 0, 0, 5, 10, 1, 0, 0, 6, 20, 6, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2011

Keywords

Comments

Riordan array (x/(1-x)^2, x^2/(1-x)^2).
Mirror image of triangle in A119900.
A203322*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 05 2011
From Gus Wiseman, Jul 07 2025: (Start)
Also the number of subsets of {1..n} containing n with k maximal runs (sequences of consecutive elements increasing by 1). For example, row n = 5 counts the following subsets:
{5} {1,5} {1,3,5}
{4,5} {2,5}
{3,4,5} {3,5}
{2,3,4,5} {1,2,5}
{1,2,3,4,5} {1,4,5}
{2,3,5}
{2,4,5}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
For anti-runs instead of runs we have A053538.
Without requiring n see A210039, A202023, reverse A098158, A109446.
(End)

Examples

			Triangle begins :
1
2, 0
3, 1, 0
4, 4, 0, 0
5, 10, 1, 0, 0
6, 20, 6, 0, 0, 0
7, 35, 21, 1, 0, 0, 0
8, 56, 56, 8, 0, 0, 0, 0
		

Crossrefs

Cf. A007318, A005314 (antidiagonal sums), A119900, A084938, A130595, A203322.
Column k = 1 is A000027.
Row sums are A000079.
Column k = 2 is A000292.
Without zeros we have A034867.
Last nonzero term in each row appears to be A124625.
A034839 counts subsets by number of maximal runs, for anti-runs A384893.
A116674 counts strict partitions by number of maximal runs, for anti-runs A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Length[Split[#,#2==#1+1&]]==k&]],{n,12},{k,n}] (* Gus Wiseman, Jul 07 2025 *)

Formula

G.f.: 1/((1-x)^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13 respectively.
T(n,k) = binomial(n+1,2k+1).
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 15 2012

A077954 Expansion of 1/(1-x+2*x^2-x^3) in powers of x.

Original entry on oeis.org

1, 1, -1, -2, 1, 4, 0, -7, -3, 11, 10, -15, -24, 16, 49, -7, -89, -26, 145, 108, -208, -279, 245, 595, -174, -1119, -176, 1888, 1121, -2831, -3185, 3598, 7137, -3244, -13920, -295, 24301, 10971, -37926, -35567, 51256, 84464, -53615, -171287, 20407, 309366, 97265, -501060, -386224, 713161
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Examples

			G.f. = 1 + x - x^2 - 2*x^3 + x^4 + 4*x^5 - 7*x^7 - 3*x^8 + 11*x^9 + ...
		

Crossrefs

Programs

  • GAP
    a:=[1,1,-1];; for n in [4..50] do a[n]:=a[n-1]-2*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Aug 07 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x+2*x^2-x^3) )); // G. C. Greubel, Aug 07 2019
    
  • Maple
    seq(coeff(series(1/(1-x+2*x^2-x^3), x, n+1), x, n), n = 0..50); # G. C. Greubel, Aug 07 2019
  • Mathematica
    a[ n_] := If[ n < 0, SeriesCoefficient[ x^3 / (1 - 2 x + x^2 - x^3), {x, 0, -n}], SeriesCoefficient[ 1 / (1 - x + 2 x^2 - x^3), {x, 0, n}]]
    LinearRecurrence[{1,-2,1}, {1,1,-1}, 50] (* G. C. Greubel, Aug 07 2019 *)
  • PARI
    {a(n) = if( n<0,  polcoeff( x^3 / (1 - 2*x + x^2 - x^3) + x * O(x^-n), -n), polcoeff( 1 / (1 - x + 2*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, Sep 18 2012 */
    
  • Sage
    (1/(1-x+2*x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Aug 07 2019
    

Formula

a(0)=1, a(1)=1, a(2)=-1, a(n) = a(n-1) -2*a(n-2) +a(n-3) for n>=3. - Philippe Deléham, Sep 15 2006
a(n) = A000931(-2*n). - Michael Somos, Sep 18 2012
a(n) = A005314(-n-2). - Michael Somos, Dec 13 2013
a(n) = a(n-1) - 2*a(n-2) + a(n-3) for all n in Z. - Michael Somos, Dec 13 2013

A136444 a(n) = Sum_{k=0..n} k*binomial(n-k, 2*k).

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 12, 25, 51, 101, 197, 381, 731, 1392, 2634, 4958, 9290, 17337, 32239, 59760, 110460, 203651, 374593, 687567, 1259597, 2303449, 4205493, 7666560, 13956532, 25374108, 46076436, 83575025, 151431099, 274108826, 495708364, 895670733, 1617003823, 2916984121
Offset: 0

Views

Author

Don Knuth, Apr 04 2008

Keywords

Comments

Consider four related sequences: A_n = sum C(n-k, 2*k), B_n = sum C(n-k, 2*k+1), A^*_n = sum k*C(n-k, 2*k), B^*_n = sum k*C(n-k, 2*k+1).
Sequence A_n, with generating function (1-z)/p(z) where p(z) = 1 - 2*z + z^2 - z^3, is A005251.
Sequence B_n, with generating function z/p(z), is A005314.
Sequence A^*_n is the present sequence.
Sequence B^*_n is A118430, but shifted one place so that the generating function is z^4/p(z)^2 instead of z^3/p(z)^2.
These sequences have many interrelations; for example,
B_{n+1} - B_n = A_n; B^*_{n+1} - B^*_n = A^*_n;
A_{n+1} - A_n = B_{n-1}; A^*{n+1} - A^*_n = B^*{n-1} + B_{n-1}.

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Programs

  • Magma
    [&+[k*Binomial(n-k, 2*k): k in [0..n]]: n in [0..40]]; // Bruno Berselli, Feb 13 2015
  • Maple
    a:= n-> (Matrix([[0,0,1,1,-3,-5]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,-6,6,-5,2,-1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..37);  # Alois P. Heinz, Aug 13 2008
  • Mathematica
    a[n_] := ({0, 0, 1, 1, -3, -5} . MatrixPower[ Table[If[i == j-1, 1, If[j == 1, {4, -6, 6, -5, 2, -1}[[i]], 0]], {i, 6}, {j, 6}], n])[[1]]; Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
    CoefficientList[Series[x^3 (1 - x)/(1 - 2 x + x^2 - x^3)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 15 2015 *)

Formula

G.f.: x^3*(1-x)/(1-2*x+x^2-x^3)^2.
a(n) ~ c * d^n * n, where d = A109134 = 1.75487766624669276... is the root of the equation d*(d-1)^2 = 1, c = 0.072838349685011... is the root of the equation 529*c^3 - 207*c^2 + 26*c = 1. - Vaclav Kotesovec, May 25 2015

A077930 Expansion of (1-x)^(-1)/(1+2*x+x^2+x^3).

Original entry on oeis.org

1, -1, 2, -3, 6, -10, 18, -31, 55, -96, 169, -296, 520, -912, 1601, -2809, 4930, -8651, 15182, -26642, 46754, -82047, 143983, -252672, 443409, -778128, 1365520, -2396320, 4205249, -7379697, 12950466, -22726483, 39882198, -69988378, 122821042, -215535903, 378239143, -663763424
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Signed version of A060945: a(n) = (-1)^n * A060945(n).

Crossrefs

All of A060945, A077930, A181532 are variations of the same sequence. - N. J. A. Sloane, Mar 04 2012

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x)/(1+2x+x^2+x^3),{x,0,50}],x] (* or *) LinearRecurrence[ {-1,1,0,1},{1,-1,2,-3},50] (* Harvey P. Dale, Feb 20 2013 *)
  • PARI
    Vec((1-x)^(-1)/(1+2*x+x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012

Formula

a(n+1)-a(n) = (-1)^(n+1)*A005314(n+2). - R. J. Mathar, Mar 14 2011
a(0)=1, a(1)=-1, a(2)=2, a(3)=-3, a(n)=-a(n-1)+a(n-2)+a(n-4). - Harvey P. Dale, Feb 20 2013

A099529 Expansion of (1+x)^2/((1+x)^2+x^3).

Original entry on oeis.org

1, 0, 0, -1, 2, -3, 5, -9, 16, -28, 49, -86, 151, -265, 465, -816, 1432, -2513, 4410, -7739, 13581, -23833, 41824, -73396, 128801, -226030, 396655, -696081, 1221537, -2143648, 3761840, -6601569, 11584946, -20330163, 35676949, -62608681, 109870576, -192809420, 338356945, -593775046, 1042002567
Offset: 0

Views

Author

Paul Barry, Oct 20 2004

Keywords

Comments

Binomial transform has g.f. 1/(1-x+x^3) (A050935(n+2)).

Formula

a(n)=-2a(n-1)-a(n-2)-a(n-3); a(n)=sum{j=0..n, sum{k=0..floor(j/3), C(n, j)(-1)^(n-j)C(j-2k, k)(-1)^k}}.
a(n)=(-1)^n*A005314(n-2). [From R. J. Mathar, Nov 26 2008]

A259967 a(n) = a(n-1) + a(n-2) + a(n-4).

Original entry on oeis.org

3, 2, 2, 5, 10, 17, 29, 51, 90, 158, 277, 486, 853, 1497, 2627, 4610, 8090, 14197, 24914, 43721, 76725, 134643, 236282, 414646, 727653, 1276942, 2240877, 3932465, 6900995, 12110402, 21252274, 37295141, 65448410, 114853953, 201554637, 353703731, 620706778
Offset: 0

Views

Author

N. J. A. Sloane, Jul 11 2015

Keywords

Comments

Also the number of maximal independent vertex sets (and minimal vertex covers) in the n-gear graph. - Eric W. Weisstein, May 25 2017
Also the number of chordless cycles in the n-antiprism graph for n >= 4. - Eric W. Weisstein, Jan 02 2018

References

  • R. K. Guy, Letter to N. J. A. Sloane, Feb 05 1986.

Crossrefs

Programs

  • Haskell
    a259967 n = a259967_list !! n
    a259967_list = 3 : 2 : 2 : 5 : zipWith3 (((+) .) . (+))
       a259967_list (drop 2 a259967_list) (drop 3 a259967_list)
    -- Reinhard Zumkeller, Jul 12 2015
    
  • Magma
    I:=[3,2,2,5]; [n le 4 select I[n] else Self(n-1)+Self(n-2)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Sep 26 2017
  • Maple
    f:= gfun:-rectoproc({-a(n+3)+2*a(n+2)-a(n+1)+a(n), a(0) = 3, a(1) = 2, a(2) = 2},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Jul 18 2016
  • Mathematica
    Abs @ CoefficientList[Series[(x - 1) (x - 3)/(-1 + 2 x - x^2 + x^3), {x, 0, 36}], x] (* Michael De Vlieger, Jul 18 2016 *)
    LinearRecurrence[{2, -1, 1}, {2, 2, 5}, 20] (* Eric W. Weisstein, May 25 2017 *)
    Table[RootSum[-1 + # - 2 #^2 + #^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, May 25 2017 *)
    RootSum[-1 + # - 2 #^2 + #^3 &, #^Range[0, 20] &] (* Eric W. Weisstein, Jan 02 2018 *)
  • PARI
    x='x+O('x^50); Vec((x-1)*(x-3)/(1-2*x+x^2-x^3)) \\ G. C. Greubel, May 24 2017
    

Formula

G.f.: (x-1)*(x-3) / (1 -2*x +x^2 -x^3). - R. J. Mathar, Jul 15 2015
a(n) = -4*A005314(n) +3*A005314(n+1) +A005314(n-1). - R. J. Mathar, Jul 15 2015
a(n) = Sum_{i=1..3} r_i^n where r_i are the roots of x^3-2*x^2+x-1. - Robert Israel, Jul 18 2016
a(n) = A109377(n-2) for n > 1. - Georg Fischer, Oct 09 2018

A224838 Triangle read by rows, obtained from triangle A011973 by reading that array from right to left along the irregular paths shown in the figure.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 4, 1, 4, 6, 5, 1, 1, 10, 10, 6, 1, 1, 5, 20, 15, 7, 1, 6, 15, 35, 21, 8, 1, 1, 21, 35, 56, 28, 9, 1, 1, 7, 56, 70, 84, 36, 10, 1, 8, 28, 126, 126, 120, 45, 11, 1, 1, 36, 84, 252, 210, 165, 55, 12, 1, 1, 9, 120, 210, 462, 330, 220, 66, 13, 1
Offset: 1

Views

Author

John Molokach, Jul 21 2013

Keywords

Comments

The successive rows have lengths 1,2,2; 3,4,4; 5,6,6; 7,8,8; ...
Sum of row n is A005314(n).
Old definition was: "Triangle of falling diagonals of A011973 (with rows displayed as centered text)."

Examples

			First 11 rows of the triangle:
  1;
  1,  1;
  2,  1;
  1,  3,  1;
  1,  3,  4,  1;
  4,  6,  5,  1;
  1, 10, 10,  6,  1;
  1,  5, 20, 15,  7,  1;
  6, 15, 35, 21,  8,  1;
  1, 21, 35, 56, 28,  9,  1;
  1,  7, 56, 70, 84, 36, 10,  1;
		

Crossrefs

Programs

  • Mathematica
    Table[Reverse[Table[Binomial[n - Floor[(k + 1)/2], n - Floor[(3 k - 1)/2]], {k, Floor[(2 n + 2)/3]}]], {n, 13}] (* T. D. Noe, Jul 25 2013 *)
    Column[Table[Binomial[n - Floor[(4 n + 15 - 6 k + (-1)^k)/12], n - Floor[(4 n + 15 - 6 k + (-1)^k)/12] - Floor[(2 n - 1)/3] + k - 1], {n, 1, 25}, {k, 1, Floor[(2 n + 2)/3]}]] (* John Molokach, Jul 25 2013 *)

Formula

r(n) = binomial(n-floor((4n+15-6k+(-1)^k)/12), n-floor((4n+15-6k+(-1)^k)/12)-floor((2n-1)/3)+k-1), k = 1..floor((2n+2)/3).
R(n) = binomial(n-floor((k+1)/2), n-floor((3k-1)/2)), k = 1..floor((2n+2)/3), gives the terms of each row in reverse order.

Extensions

Entry revised by N. J. A. Sloane, Jul 07 2024

A289692 The number of partitions of [n] with exactly 2 blocks without peaks.

Original entry on oeis.org

0, 1, 2, 4, 8, 15, 27, 48, 85, 150, 264, 464, 815, 1431, 2512, 4409, 7738, 13580, 23832, 41823, 73395, 128800, 226029, 396654, 696080, 1221536, 2143647, 3761839, 6601568, 11584945
Offset: 1

Views

Author

R. J. Mathar, Jul 09 2017

Keywords

Crossrefs

Cf. A005251 (first differences), A289693 (3 blocks), A289694 (4 blocks).

Programs

  • GAP
    a:=[0, 1, 2, 4]; for n in [5..10^2] do a[n]:=3*a[n-1]-3*a[n-2]+2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Jan 25 2018
    
  • Magma
    I:=[0, 1, 2, 4]; [n le 4 select I[n] else 3*Self(n-1)-3*Self(n-2)+2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jan 26 2018
  • Maple
    a := proc(n) option remember: if n = 1 then 0 elif n = 2 then 1 elif n=3 then 2 elif n=4 then 4 elif  n >= 5 then 3*procname(n-1) -3*procname(n-2)+2*procname(n-3)-procname(n-4) fi; end:
    seq(a(n), n = 0..100); # Muniru A Asiru, Jan 25 2018
  • Mathematica
    LinearRecurrence[{3, -3, 2, -1}, {0, 1, 2, 4}, 40] (* Vincenzo Librandi, Jan 26 2018 *)

Formula

From Colin Barker, Nov 07 2017: (Start)
G.f.: x^2*(1 - x + x^2) / ((1 - x)*(1 - 2*x + x^2 - x^3)).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4) for n>4. (End)
a(n) = A077855(n-2) - A005314(n-2) for n>1. - John Molokach, Jan 23 2018
a(n) - a(n-1) = A005251(n). - R. J. Mathar, Mar 11 2021

A193736 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = (n+1)-st Fibonacci polynomial and q(n,x) = (x+1)^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 2, 1, 4, 8, 8, 3, 1, 5, 13, 19, 15, 5, 1, 6, 19, 36, 42, 28, 8, 1, 7, 26, 60, 91, 89, 51, 13, 1, 8, 34, 92, 170, 216, 182, 92, 21, 1, 9, 43, 133, 288, 446, 489, 363, 164, 34, 1, 10, 53, 184, 455, 826, 1105, 1068, 709, 290, 55, 1, 11, 64, 246, 682, 1414, 2219, 2619, 2266, 1362, 509, 89
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.

Examples

			First six rows:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  4,  2;
  1,  4,  8,  8,  3;
  1,  5, 13, 19, 15,  5;
		

Crossrefs

Cf. A000007, A005314 (diagonal sums), A052542 (row sums), A077962.

Programs

  • Magma
    function T(n,k) // T = A193736
      if k lt 0 or n lt 0 then return 0;
      elif n lt 3 then return Binomial(n,k);
      else return T(n-1, k) + T(n-1, k-1) + T(n-2, k-2);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 24 2023
    
  • Mathematica
    (* First program *)
    p[0, x_] := 1
    p[n_, x_] := Fibonacci[n + 1, x] /; n > 0
    q[n_, x_] := (x + 1)^n
    t[n_, k_] := Coefficient[p[n, x], x^(n - k)];
    t[n_, n_] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n - k + 1, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193736 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]          (* A193737 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[n<3, Binomial[n, k], T[n-1,k] +T[n-1,k-1] +T[n -2,k-2]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//TableForm (* G. C. Greubel, Oct 24 2023 *)
  • SageMath
    def T(n,k): # T = A193736
        if (n<3): return binomial(n,k)
        else: return T(n-1,k) +T(n-1,k-1) +T(n-2,k-2)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 24 2023

Formula

T(0,0) = T(1,0) = T(1,1) = T(2,0) = T(2,2) = 1; T(n,k) = 0 if k<0 or k>n; T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2). - Philippe Deléham, Feb 13 2020
From G. C. Greubel, Oct 24 2023: (Start)
T(n, k) = A193737(n, n-k).
T(n, n) = Fibonacci(n) + [n=0] = A324969(n+1).
T(n, n-1) = A029907(n).
Sum_{k=0..n} T(n, k) = A052542(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A005314(n) + [n=0].
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = [n=0] + A077962(n-1). (End)

A099557 Slanted Pascal's triangle, read by rows, such that T(n,k) = binomial(n-[k/2],k) for [n*2/3]>=k>=0, where [x]=floor(x).

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 4, 3, 1, 0, 1, 5, 6, 4, 0, 0, 1, 6, 10, 10, 1, 0, 0, 1, 7, 15, 20, 5, 1, 0, 0, 1, 8, 21, 35, 15, 6, 0, 0, 0, 1, 9, 28, 56, 35, 21, 1, 0, 0, 0, 1, 10, 36, 84, 70, 56, 7, 1, 0, 0, 0, 1, 11, 45, 120, 126, 126, 28, 8, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Oct 22 2004

Keywords

Comments

Row sums form A005314. Antidiagonal sums form A099558.

Examples

			Rows begin:
[1],
[1,1],
[1,2,0],
[1,3,1,0],
[1,4,3,1,0],
[1,5,6,4,0,0],
[1,6,10,10,1,0,0],
[1,7,15,20,5,1,0,0],
[1,8,21,35,15,6,0,0,0],
[1,9,28,56,35,21,1,0,0,0],
[1,10,36,84,70,56,7,1,0,0,0],...
and can be derived from Pascal's triangle
by shifting each column k down by [k/2] rows.
		

Crossrefs

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x+x*y)/((1-x)^2-x^3*y^2)+x*O(x^n),n,x)+y*O(y^k),k,y)}

Formula

G.f.: (1-x+x*y)/((1-x)^2-x^3*y^2).
Previous Showing 11-20 of 32 results. Next