cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A158757 Expansion of e.g.f. exp(t*x)/(1 - x^2/t^2 - t^3* x^3).

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 7, 24, 0, 0, 0, 12, 0, 0, 0, 25, 0, 0, 120, 0, 0, 0, 260, 0, 0, 0, 61, 720, 0, 0, 0, 360, 0, 0, 0, 1470, 0, 0, 0, 841, 0, 0, 5040, 0, 0, 0, 15960, 0, 0, 0, 5082, 0, 0, 0, 5251, 40320, 0, 0, 0, 20160, 0, 0, 0, 122640, 0, 0, 0, 134456, 0, 0, 0, 20497
Offset: 0

Views

Author

Roger L. Bagula, Mar 25 2009

Keywords

Examples

			Irregular triangle begins as:
      1;
      0, 0,    1;
      2, 0,    0, 0,   1;
      0, 0,    6, 0,   0, 0,     7;
     24, 0,    0, 0,  12, 0,     0, 0,   25;
      0, 0,  120, 0,   0, 0,   260, 0,    0, 0,   61;
    720, 0,    0, 0, 360, 0,     0, 0, 1470, 0,    0, 0, 841;
      0, 0, 5040, 0,   0, 0, 15960, 0,    0, 0, 5082, 0,   0, 0, 5251;
		

References

  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, page 221.

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x^2/t^2 - t^3*x^3), {x, 0, 20}], n]], t], {n, 0, 10}]//Flatten
  • Sage
    f(x,t) = exp(t*x)/(1 - x^2/t^2 - t^3*x^3)
    def A158757(n,k): return ( factorial(n)*t^n*( f(x,t) ).series(x, 20).list()[n] ).series(t,2*n+1).list()[k]
    flatten([[A158757(n,k) for k in (0..2*n)] for n in (0..10)]) # G. C. Greubel, Dec 05 2021

Formula

T(n, k) = coefficients of e.g.f.: exp(t*x)/(1 - x^2/t^2 - t^3* x^3).
From G. C. Greubel, Dec 05 2021: (Start)
T(n, 2*n) = A330044(n).
T(n, 0) = A005359(n).
T(n, 2) = A005212(n). (End)

Extensions

Edited by G. C. Greubel, Dec 01 2021

A167568 A triangle related to the GF(z) formulas of the rows of the ED2 array A167560.

Original entry on oeis.org

1, 0, 2, 2, -2, 6, 0, 16, -16, 24, 24, -48, 144, -120, 120, 0, 432, -864, 1392, -960, 720, 720, -2160, 8208, -12816, 14448, -8400, 5040, 0, 23040, -69120, 149760, -184320, 161280, -80640, 40320, 40320, -161280, 760320, -1716480, 2684160, -2695680
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The GF(z) formulas given below correspond to the first ten rows of the ED2 array A167560. The polynomials in their numerators lead to the triangle given above.

Examples

			Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = 2/(1-z)^2.
Row 3: GF(z) = (2*z^2 - 2*z + 6)/(1-z)^3.
Row 4: GF(z) = (0*z^3 + 16*z^2 - 16*z + 24)/(1-z)^4.
Row 5: GF(z) = (24*z^4 - 48*z^3 + 144*z^2 - 120*z + 120)/(1-z)^5.
Row 6: GF(z) = (432*z^4 - 864*z^3 + 1392*z^2 - 960*z + 720)/(1-z)^6.
Row 7: GF(z) = (720*z^6 - 2160*z^5 + 8208*z^4 - 12816*z^3 + 14448*z^2 - 8400*z + 5040)/(1-z)^7.
Row 8: GF(z) = (0*z^7 + 23040*z^6 - 69120*z^5 + 149760*z^4 - 184320*z^3 + 161280*z^2 - 80640*z + 40320)/(1-z)^8.
Row 9: GF(z) = (40320*z^8 - 161280*z^7 + 760320*z^6 - 1716480*z^5 + 2684160*z^4 - 2695680*z^3 + 1935360*z^2 - 846720*z + 362880)/(1-z)^9.
Row 10: GF(z) = (0*z^9 + 2016000*z^8 - 8064000*z^7 + 22464000*z^6 - 39168000*z^5 + 48360960*z^4 - 40849920*z^3 + 24917760*z^2 - 9676800*z + 3628800)/(1-z)^10.
		

Crossrefs

A167560 is the ED2 array.
A005359 equals the first left hand column.
A000142(n=>1) and 2*A005990 equal the first two right hand columns.
A000142(n=>1) equals the row sums.

A335873 Total number of points in all permutations of [n] that are fixed or reflected.

Original entry on oeis.org

0, 1, 4, 10, 48, 216, 1440, 9360, 80640, 685440, 7257600, 76204800, 958003200, 11975040000, 174356582400, 2528170444800, 41845579776000, 690452066304000, 12804747411456000, 236887827111936000, 4865804016353280000, 99748982335242240000, 2248001455555215360000
Offset: 0

Views

Author

Alois P. Heinz, Jun 28 2020

Keywords

Comments

A permutation p of [n] has fixed point j if p(j) = j, it has reflected point j if p(n+1-j) = j. A point can be fixed and reflected at the same time.

Examples

			a(3) = 10: (1)(2)(3), (1)32, 21(3), 23(1), (3)12, (3)(2)(1).
		

Crossrefs

Bisection (even part) gives 2 * A010050(n) for n>0.

Programs

  • Maple
    b:= proc(s, i) option remember; (n-> `if`(n=0, [1, 0],
          add((p-> p+[0, `if`(j in {i, n}, p[1], 0)])(
            b(s minus {j}, i+1)), j=s)))(nops(s))
        end:
    a:= n-> b({$1..n}, 1)[2]:
    seq(a(n), n=0..14);
    # second Maple program:
    a:= n-> `if`(n=0, 0, 2*n! -`if`(n::odd, (n-1)!, 0)):
    seq(a(n), n=0..22);
    # third Maple program:
    a:= proc(n) option remember; `if`(n<2, n, (n-1)*
          (4*a(n-1)+(n-2)*(4*n-3)*a(n-2))/(4*n-7))
        end:
    seq(a(n), n=0..22);
  • Mathematica
    a[n_] :=  If[n == 0, 0, 2 n! - If[OddQ[n], (n-1)!, 0]];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Aug 24 2021, from 2nd Maple program *)

Formula

E.g.f.: 2*x/(1-x) - (log(1+x) - log(1-x))/2.
a(0) = 0, a(n) = 2*n! - (n mod 2)*(n-1)! for n > 0.
a(n) = (n-1)*(4*a(n-1)+(n-2)*(4*n-3)*a(n-2))/(4*n-7) for n >= 2, a(n) = n for n < 2.
a(n) = Sum_{k=1..n} k * A335872(n,k).

A158785 Expansion of e.g.f.: exp(t*x)/(1 - x^2/t - t^3*x^3).

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 1, 0, 6, 0, 0, 7, 24, 0, 0, 12, 0, 0, 25, 0, 120, 0, 0, 260, 0, 0, 61, 720, 0, 0, 360, 0, 0, 1470, 0, 0, 841, 0, 5040, 0, 0, 15960, 0, 0, 5082, 0, 0, 5251, 40320, 0, 0, 20160, 0, 0, 122640, 0, 0, 134456, 0, 0, 20497, 0, 362880, 0, 0, 1512000
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2009

Keywords

Examples

			Irregular triangle begins as:
      1;
      0,    1;
      2,    0, 0,     1;
      0,    6, 0,     0,     7;
     24,    0, 0,    12,     0, 0,     25;
      0,  120, 0,     0,   260, 0,      0,   61;
    720,    0, 0,   360,     0, 0,   1470,    0, 0,    841;
      0, 5040, 0,     0, 15960, 0,      0, 5082, 0,      0, 5251;
  40320,    0, 0, 20160,     0, 0, 122640,    0, 0, 134456,    0, 0, 20497;
		

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Expand[t^Floor[n/2]*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x^2/t - t^3*x^3), {x, 0, 20}], n]], t], {n, 0, 10}]//Flatten
  • Sage
    f(x, t) = exp(t*x)/(1 - x^2/t - t^3*x^3)
    def A158785(n, k): return ( factorial(n)*t^(n//2)*( f(x, t) ).series(x, 20).list()[n] ).series(t, 2*n+1).list()[k]
    flatten([[A158785(n, k) for k in (0..n+(n//2))] for n in (0..10)]) # G. C. Greubel, Dec 05 2021

Formula

T(n, k) = coefficients of e.g.f.: t^floor(n/2)*exp(t*x)/(1 - x^2/t - t^3*x^3).
From G. C. Greubel, Dec 05 2021: (Start)
T(n, floor(n/2) + n) = A330044(n).
T(n, 0) = A005359(n).
T(n, 1) = A005212(n). (End)

Extensions

Edited by G. C. Greubel, Dec 05 2021

A177146 n-th derivative of arctan(x) at x = 1, n >= 4.

Original entry on oeis.org

0, -3, 15, -45, 0, 1260, -11340, 56700, 0, -3742200, 48648600, -340540200, 0, 40864824000, -694702008000, 6252318072000, 0, -1187940433680000, 24946749107280000, -274414240180080000, 0, 75738330289702080000, -1893458257242552000000, 24614957344153176000000, 0
Offset: 4

Views

Author

Michel Lagneau, May 03 2010

Keywords

Comments

d^ny/dx^n = (((-1)^(n-1))*(n-1)!)*sin(n*arctan(1/x)) /(1+x^2)^(n/2) - (proof by recurrence). If n = 1, 2, 3, the values of the derivatives at x=1 are respectively 1/2, -1/2, 1/2.
d^ny/dx^n = n!*sum(k=1..n, (binomial(n-1,k-1)*(-1)^(n-k)*x^(n-k)*(1+x^2)^(-n)*(-1)^((k-1)/2)*(1+(-1)^(k-1)))/(2*k)). - Vladimir Kruchinin, Apr 22 2011

Examples

			a(5) = -3 because d^5y/dx^5 = 384*x^4/(1 + x^2)^5 - 288*x^2/(1 + x^2)^4 + 24/(1 + x^2)^3, and for x=1 we obtain 384/32 - 288/16 + 24/8 = -3.
		

Crossrefs

Cf. A005359 (n-th derivatives of arctan(x) at x = 0).

Programs

  • Maple
    # First program, with the formula:
    n0:= 50: T:=array(1..n0+1):for n from 1 to n0 do:T[n]:=(((-1)^(n-1))*(n-1) !)*sin(n*arctan(1)) /(2^(n/2)):od:print(T):
    # Second program, with the Maple instruction D(f):
    n0:= 50: T:=array(1..n0+1):f:=x->arctan(x):for n from 1 to n0 do:D(f): T[n]:=(D(f)(1)):f:=D(f):od: print(T):
    # third Maple program:
    a:= n-> n!*coeff(series(arctan(x+1), x, n+1), x, n):
    seq(a(n), n=4..40);  # Alois P. Heinz, Feb 14 2015
  • Mathematica
    Table[Abs[Integrate[Sin[x]*E^(-x)*(x^(n - 1)), {x, 0, Infinity}]], {n, 4, 28}] (* John M. Campbell, Jun 21 2011 *)
  • Maxima
    a(n):=2^(-n-1)*n!*sum((((-1)^(k-1)+1)*(-1)^(n-k+(k-1)/2)*binomial(n-1,k-1))/k,k,1,n); /* Vladimir Kruchinin, Apr 22 2011 */

Formula

a(n) = (((-1)^(n-1))*(n-1)!)*sin(n*arctan(1))/2^(n/2).
a(n) = 2^(-n-1)*n!*sum(k=1..n, (((-1)^(k-1)+1)*(-1)^(n-k+(k-1)/2)*binomial(n-1,k-1))/k). - Vladimir Kruchinin, Apr 22 2011
abs(a(n)) = abs(integrate(x=0..infty, sin(x)*exp(-x)*x^(n-1))) (see Mathematica code below). - John M. Campbell, Jun 21 2011
E.g.f.: arctan(x+1). - Alois P. Heinz, Feb 14 2015

A302611 Expansion of e.g.f. -log(1 - x)*arctanh(x).

Original entry on oeis.org

0, 0, 2, 3, 16, 50, 368, 1764, 16896, 109584, 1297152, 10628640, 149944320, 1486442880, 24349317120, 283465647360, 5287713177600, 70734282393600, 1480103564083200, 22376988058521600, 519000166327910400, 8752948036761600000, 222845873874075648000, 4148476779335454720000
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Examples

			-log(1 - x)*arctanh(x) = 2*x^2/2! + 3*x^3/3! + 16*x^4/4! + 50*x^5/5! + 368*x^6/6! + 1764*x^7/7! + 16896*x^8/8! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(-log(1-x)*arctanh(x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[-Log[1 - x] ArcTanh[x], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    x='x+O('x^99); concat([0, 0], Vec(serlaplace(log(1-x)*log((1-x)/(1+x))/2))) \\ Altug Alkan, Apr 10 2018

Formula

E.g.f.: log(1 - x)*log((1 - x)/(1 + x))/2.

A349645 Triangular array read by rows: T(n,k) is the number of square n-permutations possessing exactly k cycles; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 11, 0, 1, 0, 24, 0, 35, 0, 1, 0, 0, 184, 0, 85, 0, 1, 0, 720, 0, 994, 0, 175, 0, 1, 0, 0, 9708, 0, 4249, 0, 322, 0, 1, 0, 40320, 0, 72764, 0, 14889, 0, 546, 0, 1, 0, 0, 648576, 0, 402380, 0, 44373, 0, 870, 0, 1
Offset: 0

Views

Author

Steven Finch, Nov 23 2021

Keywords

Comments

A permutation p in S_n is a square if there exists q in S_n with q^2=p.
For such a p, the number of cycles of any even length in its disjoint cycle decomposition must be even.

Examples

			The three square 3-permutations are (1, 2, 3) with three cycles (fixed points) and (3, 1, 2) & (2, 3, 1), each with one cycle.
Among the twelve square 4-permutations are {1, 4, 2, 3} & {1, 3, 4, 2} and {3, 4, 1, 2} & {4, 3, 2, 1}, all with two cycles but differing types.
Triangle begins:
[0]   1;
[1]   0,   1;
[2]   0,   0,    1;
[3]   0,   2,    0,   1;
[4]   0,   0,   11,   0,    1;
[5]   0,  24,    0,  35,    0,   1;
[6]   0,   0,  184,   0,   85,   0,   1;
[7]   0, 720,    0, 994,    0, 175,   0,   1;
[8]   0,   0, 9708,   0, 4249,   0, 322,   0,   1;
...
		

Crossrefs

Columns k=0-1 give: A000007, A005359(n-1).
Row sums give A003483.
T(n+2,n) gives A000914.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(`if`(irem(i, 2)=0 and irem(j, 2)=1, 0, (i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1))*x^j, j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Nov 23 2021
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0,
         Sum[If[Mod[i, 2] == 0 && Mod[j, 2] == 1, 0, (i-1)!^j*multinomial[n,
         Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1]]*x^j, {j, 0, n/i}]]]];
    T[n_] := With[{p = b[n, n]}, Table[Coefficient[p, x, i], {i, 0, n}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)

A330511 Expansion of e.g.f. Sum_{k>=1} arctan(x^k).

Original entry on oeis.org

1, 2, 4, 24, 144, 480, 4320, 40320, 282240, 4354560, 36288000, 319334400, 6706022400, 74724249600, 1046139494400, 20922789888000, 376610217984000, 4979623993344000, 115242726703104000, 2919482409811968000, 29194824098119680000
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Sum[ArcTan[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[(n - 1)! DivisorSum[n, (-1)^((n/# - 1)/2) # &, OddQ[n/#] &], {n, 1, 21}]
  • PARI
    a(n) = (n-1)!*sumdiv(n, d, if (n/d % 2, (-1)^((n/d - 1)/2)*d)); \\ Michel Marcus, Dec 17 2019

Formula

E.g.f.: Sum_{i>=1} Sum_{j>=1} (-1)^(j + 1) * x^(i*(2*j - 1)) / (2*j - 1).
a(n) = (n - 1)! * Sum_{d|n, n/d odd} (-1)^((n/d - 1)/2) * d.

A331403 E.g.f.: 1 / ((1 + x) * sqrt(1 - 2*x)).

Original entry on oeis.org

1, 0, 3, 6, 81, 540, 7155, 85050, 1346625, 22339800, 431331075, 9004668750, 208178118225, 5199538043700, 140664514065075, 4080315642653250, 126613733680058625, 4180226398201854000, 146399020309066399875, 5419213146765629961750, 211446723837565171580625
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/((1 + x) Sqrt[1 - 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[(-1)^(n - k) (2 k - 1)!!/k!, {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = {n! * sum(k=0, n, (-1)^(n - k) * (2*k)! / (2^k*k!^2))} \\ Andrew Howroyd, Jan 16 2020
    
  • PARI
    seq(n) = {Vec(serlaplace(1 / ((1 + x) * sqrt(1 - 2*x + O(x*x^n)))))} \\ Andrew Howroyd, Jan 16 2020

Formula

a(n) = n! * Sum_{k=0..n} (-1)^(n - k) * (2*k - 1)!! / k!.
D-finite with recurrence: a(n) +(-n+1)*a(n-1) -(2*n-1)*(n-1)*a(n-2)=0. - R. J. Mathar, Jan 25 2020
a(n) ~ 2^(n + 3/2) * n^n / (3*exp(n)). - Vaclav Kotesovec, Jan 26 2020
Previous Showing 11-19 of 19 results.