cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 126 results. Next

A038869 Primes p such that both p-2 and 2p-1 are prime.

Original entry on oeis.org

7, 19, 31, 139, 199, 229, 271, 601, 619, 661, 811, 829, 1279, 1429, 1609, 2029, 2089, 2131, 2311, 2551, 2791, 3169, 3331, 3391, 3529, 3769, 4051, 4159, 4231, 4261, 4339, 4639, 4801, 5419, 5479, 5659, 5851, 6271, 6301, 6361, 6691, 6961, 7561, 7951, 8539
Offset: 1

Views

Author

Keywords

Comments

Primes p such that A(2*p) - 3*A(p) = 3 (7, 31, 661, 811, 2551, ...) and primes p such that 7*A(p) - A(2*p) = 21 (19, 139, 619, 1429, ...), where A=A288814, are both subsequences of A038869. - David James Sycamore, Aug 07 2017

Crossrefs

Programs

  • Magma
    [n: n in [0..10000]|IsPrime(n) and IsPrime(n-2) and IsPrime(2*n-1)]; // Vincenzo Librandi, Dec 18 2010
    
  • Mathematica
    Transpose[Select[Partition[Prime[Range[1200]],2,1],#[[2]]-#[[1]]==2 && PrimeQ[2#[[2]]-1]&]][[2]] (* Harvey P. Dale, Jun 19 2014 *)
  • PARI
    is(n)=n%6==1 && isprime(n-2) && isprime(n) && isprime(2*n-1) \\ Charles R Greathouse IV, Aug 09 2017

A046969 Denominators of coefficients in Stirling's expansion for log(Gamma(z)).

Original entry on oeis.org

12, 360, 1260, 1680, 1188, 360360, 156, 122400, 244188, 125400, 5796, 1506960, 300, 93960, 2492028, 505920, 396, 2418179400, 444, 21106800, 3109932, 118680, 25380, 104700960, 6468, 324360, 2283876, 382800, 40356, 201025024200, 732
Offset: 1

Views

Author

Douglas Stoll, dougstoll(AT)email.msn.com

Keywords

Comments

From Lorenzo Sauras Altuzarra, Oct 13 2020: (Start)
Conjecture I: if n > 2, then a(A005382(n))/12 is prime.
Conjecture II: if a(n)/12 is prime, then a(n-1)/12 - (n-1), a(n)/12 - n and a(n+2)/12 - (n+2) are multiples of 6. (End)

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
  • L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205

Crossrefs

Numerators are given in A046968. Cf. A005382.

Programs

  • Maple
    a := n -> denom(bernoulli(2*n)/(2*n*(2*n-1))): # Lorenzo Sauras Altuzarra, Oct 13 2020
  • Mathematica
    Table[ Denominator[ BernoulliB[2n]/(2n(2n - 1))], {n, 31}] (* Robert G. Wilson v, Sep 21 2006 *)
    s = LogGamma[z] + z - (z - 1/2) Log[z] - Log[2 Pi]/2 + O[z, Infinity]^62;
    DeleteCases[CoefficientList[s, 1/z], 0] // Denominator (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    a(n)=if(n<1,0,denominator(bernfrac(2*n)/(2*n)/(2*n-1)))

Formula

From denominator of Jk(z) = (-1)^(k-1)*Bk/(((2k)*(2k-1))*z^(2k-1)), so Gamma(z) = sqrt(2pi)*z^(z-0.5)*exp(-z)*exp(J(z)).

Extensions

More terms from Frank Ellermann, Jun 13 2001
Bayes reference from Henry Bottomley, Jun 03 2003

A053177 Odd composite k such that (k-1)/2 is prime.

Original entry on oeis.org

15, 27, 35, 39, 63, 75, 87, 95, 119, 123, 135, 143, 147, 159, 195, 203, 207, 215, 219, 255, 275, 279, 299, 303, 315, 327, 335, 363, 387, 395, 399, 423, 447, 455, 459, 483, 515, 527, 539, 543, 555, 567, 615, 623, 627, 635, 663, 675, 695, 699, 707, 735, 747
Offset: 1

Views

Author

Enoch Haga, Feb 29 2000

Keywords

Comments

Composite numbers produced in A053176.

Examples

			a(3)=35 and 35-1=34, 34/2=17, prime.
		

Crossrefs

Programs

  • Mathematica
    Select[2 Prime@ Range@ 74 + 1, CompositeQ] (* Michael De Vlieger, Jul 13 2015 *)
    Select[Range[1,801,2],CompositeQ[#]&&PrimeQ[(#-1)/2]&] (* Harvey P. Dale, Apr 01 2019 *)
  • PARI
    main(size)={my(v=vector(size),i,t=1);for(i=1, size, while(isprime(2*prime(t)+1), t++); v[i]=2*prime(t)+1;t++;);return(v)} /* Anders Hellström, Jul 13 2015 */

Formula

From the composite, subtract 1, divide by 2 and result is a prime.

Extensions

Definition clarified by Peter Munn, Oct 26 2017

A053685 Primes p > 7 which are congruent to 2 or 4 (mod 5) for which 2p-1 is also prime.

Original entry on oeis.org

19, 37, 79, 97, 139, 157, 199, 229, 307, 337, 367, 379, 439, 499, 547, 577, 607, 619, 727, 829, 877, 937, 967, 997, 1009, 1069, 1237, 1279, 1297, 1399, 1429, 1459, 1609, 1627, 1657, 1759, 1867, 2029, 2089, 2137, 2179, 2467, 2539, 2557, 2617, 2707, 2719
Offset: 1

Views

Author

James Sellers, Feb 15 2000

Keywords

Comments

For such primes p, 2p-1 divides Fibonacci(p). Actually it is also true that (2m-1) divides Fibonacci(m) for *all* m > 7, m = 2 or 4 (mod 5) for which 2m-1 is prime.
Intersection of A047211 and A005382 without terms <= 7. - Reinhard Zumkeller, Oct 03 2012

Examples

			Note that 19 is prime and so is 2*19-1 or 37.
		

Crossrefs

Cf. A000045.

Programs

  • Haskell
    a053685 n = a053685_list !! (n-1)
    a053685_list = dropWhile (<= 7) $ i a047211_list a005382_list where
       i xs'@(x:xs) ys'@(y:ys) | x < y     = i xs ys'
                               | x > y     = i xs' ys
                               | otherwise = x : i xs ys
    -- Reinhard Zumkeller, Oct 03 2012
  • Mathematica
    okQ[n_]:=Module[{x=Mod[n,5]},PrimeQ[2n-1]&&MemberQ[{2,4},x]]; Select[Prime[Range[5,500]],okQ]  (* Harvey P. Dale, Jan 14 2011 *)

A064812 Smallest prime p such that the infinite sequence {p, p'=2p-1, p''=2p'-1, ...} begins with a string of exactly n primes.

Original entry on oeis.org

5, 3, 2, 2131, 1531, 33301, 16651, 15514861, 857095381, 205528443121, 1389122693971, 216857744866621, 758083947856951, 107588900851484911, 69257563144280941
Offset: 1

Views

Author

David Terr, Oct 21 2002

Keywords

Comments

Chains of length n of nearly doubled primes.
Smallest prime beginning a complete Cunningham chain of length n of the second kind. (For the first kind see A005602.) - Jonathan Sondow, Oct 30 2015

Examples

			a(3) = 2 because 2 is the smallest prime such that the sequence {2, 3, 5, 9, ...} begins with exactly 3 primes, where each term in the sequence is twice the preceding term minus 1.
		

Crossrefs

A110059 Smallest prime ending a complete Cunningham chain of the second kind (2x-1) of length n.

Original entry on oeis.org

11, 13, 5, 17041, 24481, 12338881, 1065601, 1985902081, 219416417281, 105230562877441, 1422461638625281, 444124661486837761, 3105111850422067201
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 04 2005

Keywords

Comments

"Complete" means that the chain is not part of a longer chain.
A005603 has the first prime of each chain.

Examples

			a(4)=17041 because 2131,4261,8521,17041 are prime, but the preceding and following numbers (1066,34081) are not.
		

Crossrefs

Extensions

Some terms computed by Gilles Sadowski.
Edited by Don Reble, May 16 2006

A110581 Primes p such that 2p-1 is prime, but 4p-3 is not prime.

Original entry on oeis.org

3, 7, 31, 37, 97, 139, 157, 199, 211, 229, 271, 307, 337, 367, 379, 547, 577, 601, 607, 661, 691, 727, 811, 877, 937, 967, 997, 1009, 1171, 1237, 1297, 1399, 1429, 1459, 1609, 1627, 1657, 1759, 1867, 2011, 2029, 2137, 2221, 2281, 2467, 2539, 2551, 2557
Offset: 1

Views

Author

T. D. Noe, Jul 28 2005

Keywords

Comments

A subsequence of A005382, primes p such that 2p-1 is also prime. Note that for all n, 2a(n)-1 is not in this sequence.

Programs

  • Magma
    [p: p in PrimesUpTo(2600) | IsPrime(2*p-1) and not IsPrime(4*p-3)]; // Vincenzo Librandi, Apr 14 2013
  • Mathematica
    Select[Prime[Range[2, 1000]], PrimeQ[2#-1] && !PrimeQ[4#-3]&]

A117961 Hexagonal numbers with prime indices.

Original entry on oeis.org

6, 15, 45, 91, 231, 325, 561, 703, 1035, 1653, 1891, 2701, 3321, 3655, 4371, 5565, 6903, 7381, 8911, 10011, 10585, 12403, 13695, 15753, 18721, 20301, 21115, 22791, 23653, 25425, 32131, 34191, 37401, 38503, 44253, 45451, 49141, 52975, 55611
Offset: 1

Views

Author

Jonathan Vos Post, Apr 05 2006

Keywords

Comments

See also: A034953 Triangular numbers (A000217) with prime indices. A001248 Squares of primes. A116995 Pentagonal numbers with prime indices. A000384 Hexagonal numbers: n(2n-1). There are no prime hexagonal numbers. The n-th Hexagonal number A000384(n) = n*(2*n-1) is semiprime iff both n and 2*n-1 are prime iff A000384(n) is an element of A001358 iff n is an element of A005382.

Crossrefs

Programs

  • Mathematica
    With[{hex=Table[n(2n-1),{n,250}]},Flatten[Table[Take[hex,{Prime[n]}],{n, 40}]]] (* Harvey P. Dale, Dec 04 2011 *)

Formula

a(n) = A000040(n)*(2*A000040(n)-1). a(n) = A000384(prime(n)). a(n) = number of divisors of 12^(prime(n)-1) = A000005(A001021(A000040(n)-1)).

A125294 Numerator of (Sum_{k=1..n} k^2) / (Product_{k=1..n} k^2).

Original entry on oeis.org

1, 5, 7, 5, 11, 91, 1, 17, 19, 11, 23, 13, 1, 29, 31, 17, 1, 703, 1, 41, 43, 23, 47, 1, 1, 53, 1, 29, 59, 1891, 1, 1, 67, 1, 71, 2701, 1, 1, 79, 41, 83, 43, 1, 89, 1, 47, 1, 97, 1, 101, 103, 53, 107, 109, 1, 113, 1, 59, 1, 61, 1, 1, 127, 1, 131, 67, 1, 137, 139, 71, 1, 73, 1, 149
Offset: 1

Views

Author

Alexander Adamchuk, Jan 17 2007

Keywords

Comments

All a(n) are either 1, semiprime or prime.
a(n) = 1 for n = 1 and n = {7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, ...} = A067656 = numbers n such that n!*B(2*n) is an integer, where the B(2*n)'s are the Bernoulli numbers.
p divides a(p-1) for prime p > 3. p divides a((p-1)/2) for prime p > 3.
a(p-1) = p*(2p-1) is a semiprime hexagonal number for prime p = {7, 19, 31, 37, 79, 97, 139, 157, 199, 211, 229, 271, 307, 331, 337, 367, 379, 439, 499, ...} = A005382(n) for n > 2, where A005382(n) are the numbers n such that n and 2*n-1 are primes.
a(p-1) = p for prime p = {5, 11, 13, 17, 23, 29, 41, 43, 47, 53, 59, 61, 67, 71, 73, 83, 89, ...} = primes that do not belong to A005382(n).
a((p-1)/2) = p for prime p = {5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 259, 271, 281, 283, 293, 307, 311, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 401, ...}, which is apparently the union of {5} and A034849(n).

Examples

			The first few fractions are 1, 5/4, 7/18, 5/96, 11/2880, 91/518400, 1/181440, 17/135475200, 19/8778792960, ... = A125294/A334735. - _Petros Hadjicostas_, May 09 2020
		

Crossrefs

Cf. A005382, A034849, A067656, A166602, A334735 (denominators).

Programs

  • Mathematica
    Table[Numerator[n(n+1)(2n+1)/6/(n!)^2],{n,1,500}]
  • PARI
    a(n) = numerator(sum(k=1, n, k^2)/prod(k=1, n, k^2)); \\ Michel Marcus, May 09 2020

Formula

a(n) = numerator((Sum_{k=1..n} k^2) / (Product_{k=1..n} k^2)).
a(n) = numerator(n*(n+1)*(2*n+1)/6/(n!)^2).

A158016 Primes p such that 8*p-1 is also prime.

Original entry on oeis.org

3, 13, 19, 61, 79, 103, 163, 181, 193, 223, 229, 313, 331, 349, 409, 433, 439, 541, 571, 613, 619, 691, 751, 769, 853, 859, 919, 991, 1021, 1033, 1039, 1321, 1381, 1423, 1483, 1543, 1549, 1621, 1699, 1759, 1801, 1861, 1873, 1879, 1951, 1999, 2011, 2029, 2113
Offset: 1

Views

Author

Roger L. Bagula, Mar 11 2009

Keywords

Crossrefs

Cf. A005382 for the type 2p-1, A062737 for 4p-1, A158015 for 6p-1, A158017 for 10p-1.

Programs

  • Magma
    [p: p in PrimesUpTo(2200) | IsPrime(8*p - 1)]; // Vincenzo Librandi, Apr 14 2013
  • Mathematica
    Select[Prime[Range[600]], PrimeQ[(8 # - 1)]&] (* Vincenzo Librandi, Apr 14 2013 *)

Extensions

Edited by the Associate Editors of the OEIS, Apr 22 2009
Previous Showing 51-60 of 126 results. Next