cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 89 results. Next

A052011 Number of primes between successive Fibonacci numbers exclusive.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 16, 23, 37, 55, 84, 125, 198, 297, 458, 704, 1087, 1673, 2602, 4029, 6263, 9738, 15186, 23704, 36981, 57909, 90550, 142033, 222855, 349862, 549903, 865019, 1361581, 2145191, 3381318, 5334509, 8419527, 13298630
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Comments

With the given sequence data, we see that neither endpoint is included, so we count primes p in the open interval F(n)Jeppe Stig Nielsen, Jun 06 2015

Examples

			Between Fib(9)=34 and Fib(10)=55 we find the following primes: 37, 41, 43, 47 and 53 hence a(9)=5.
		

Crossrefs

Cf. A000040, A001605, A005478 (endpoint primes), A010051, A052012, A054782.

Programs

  • Haskell
    a052011 n = a052011_list !! (n-1)
    a052011_list = c 0 0 $ drop 2 a000045_list where
      c x y fs'@(f:fs) | x < f     = c (x+1) (y + a010051 x) fs'
                       | otherwise = y : c (x+1) 0 fs
    -- Reinhard Zumkeller, Dec 18 2011
    
  • Maple
    for n from 1 to 43 do T[n]:= numtheory:-pi(combinat:-fibonacci(n)) od:
    seq(T[n]-T[n-1]-`if`(isprime(combinat:-fibonacci(n)),1,0), n=2..43); # Robert Israel, Jun 08 2015
  • Mathematica
    lst={};Do[p=0;Do[If[PrimeQ[a],p++ ],{a,Fibonacci[n]+1,Fibonacci[n+1]-1}];AppendTo[lst,p],{n,50}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
    pbf[n_]:=Module[{fib1=If[PrimeQ[Fibonacci[n+1]],PrimePi[Fibonacci[n+1]-1], PrimePi[ Fibonacci[n+1]]], fib0=If[PrimeQ[Fibonacci[n]], PrimePi[ Fibonacci[n]+1],PrimePi[Fibonacci[n]]]},Max[0,fib1-fib0]]; Array[pbf,50] (* Harvey P. Dale, Mar 01 2012 *)
  • PARI
    a(n)=my(s); forprime(p=fibonacci(n)+1,fibonacci(n+1)-1,s++); s \\ Charles R Greathouse IV, Jun 08 2015

Formula

a(n) = pi(F(n+1)-1) - pi(F(n)) = A000720(A000045(n+1)-1) - A000720(A000045(n)). - Jonathan Vos Post, Mar 08 2010; corrected by Jeppe Stig Nielsen, Jun 06 2015
a(n) ~ phi^(n-1)/(n*sqrt(5)*log(phi)), where phi = (1+sqrt(5))/2 is the golden ratio. - Charles R Greathouse IV, Jun 08 2015
a(n) = A054782(n+1) - A054782(n) - [n+1 in A001605], where [] denotes the Iverson bracket. - Amiram Eldar, Jun 10 2024

A076777 Number of primes between successive Fibonacci numbers inclusive.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 3, 5, 8, 10, 17, 23, 37, 55, 85, 125, 198, 297, 458, 704, 1088, 1673, 2602, 4029, 6263, 9738, 15187, 23704, 36981, 57909, 90550, 142033, 222855, 349862, 549903, 865019, 1361581, 2145191, 3381318, 5334509, 8419528, 13298630, 21014892, 33227992
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 14 2002

Keywords

Comments

a(n) = #{p prime | A000045(n)A000045(n+1)}.

Examples

			a(10) = 8, as there are 8 primes greater than A000045(10) = 55 and not greater than A000045(10+1) = 89: 59, 61, 67, 71, 73, 79, 83 and 89.
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory): seq(pi(fibonacci(n+1))-pi(fibonacci(n)),n=0..35); # Emeric Deutsch
  • Mathematica
    Table[PrimePi[Fibonacci[k+1]]-PrimePi[Fibonacci[k]],{k,50}] (* Vladimir Joseph Stephan Orlovsky, Nov 30 2010 *)
  • PARI
    A076777(n) = primepi(fibonacci(n+1))-primepi(fibonacci(n))
    A076777(n) = sum(i=fibonacci(n)+1,fibonacci(n+1),isprime(i)) \\ Michael B. Porter, Nov 24 2009

Formula

a(n) = A000720(A000045(n+1)) - A000720(A000045(n)).

Extensions

More terms from Emeric Deutsch, Mar 02 2005
More terms from Amiram Eldar, Oct 07 2021

A092579 A sieve using the Fibonacci sequence over the integers >=2. Any multiple of a Fibonacci number, F(n)*m, such that F(n)>=2 and m>=2 is excluded and what is left is included.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 133, 137, 139, 149, 151, 157, 161, 163, 167, 173, 179, 181, 187, 191, 193, 197, 199, 203, 209, 211, 217, 223, 227, 229
Offset: 1

Views

Author

Christer Mauritz Blomqvist (MauritzTortoise(AT)hotmail.com), Apr 09 2004

Keywords

Comments

The first number in this sequence that differs from the sequence of primes is 49. This sequence will include more and more nonprime numbers since the density of this sequence nearly linear with just a bit below one number in four included in the sequence.
The density of numbers in the sequence will approach 1/4.129112110113143678897 = The limit of the product of the terms (1-1/pf(n)) as n goes from 1 to infinity and pf(n) is the prime Fibonacci numbers (A005478).

Examples

			The number 23 is included since it is not of the form F(n)*m, F(n)>=2, m>=2. The number 21 is excluded since 21=F(4)*7=3*7.
		

Crossrefs

Programs

  • Mathematica
    fs[s_] := (t = Floor[s/2]; v = Range[s]; f1 = 1; f2 = 1; While[f2 < t, f = f1 + f2; f1 = f2; f2 = f; n = 2*f2; While[n <= s, v[[n]] = 0; n = n + f2]]; Select[v, #>1 &]) (* This will generate all numbers in the sequence <=s. *)

A099000 Indices k such that the k-th prime is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 6, 24, 51, 251, 3121, 42613, 23023556, 143130479, 2602986161967491
Offset: 1

Views

Author

Rick L. Shepherd, Nov 06 2004

Keywords

Comments

From Hugo Pfoertner, Jan 06 2020: (Start)
The computation of the next two terms, corresponding to the primes F(131) = A005478(13) = 1066340417491710595814572169, and F(137) = A005478(14) = 19134702400093278081449423917, should already be within reach with current (2020) technology, e.g. with Kim Walisch's "primecount" program, which allows massive parallelization. An exact determination of the following term a(15), which corresponds to F(359), is beyond any imaginable technical possibility.
Estimates for a(13)-a(15), found by using the PARI program from A121046 in a bisection loop, with an accuracy that corresponds to the shown number of digits, are as follows:
a(13) = primepi(F(131)) ~= 1.741898800848...*10^25,
a(14) = primepi(F(137)) ~= 2.9848914766265...*10^26,
a(15) = primepi(F(359)) ~= 2.78114064956041656819790214151422895...*10^72.
(End)

Crossrefs

Cf. A001605 (n-th Fibonacci number is prime), A005478 (Prime Fibonacci numbers).
Cf. A121046.

Programs

  • Mathematica
    PrimePi[Select[Fibonacci[Range[80]], PrimeQ]]
  • PARI
    print1("1, 2");forprime(p=5,47,if(isprime(fibonacci(p)),print1(", "primepi(fibonacci(p))))) \\ Charles R Greathouse IV, Aug 21 2011

Formula

a(n) = A000720(A005478(n)). - M. F. Hasler, Aug 21 2011

Extensions

a(11) from Ryan Propper, Oct 16 2005
a(12) from Charles R Greathouse IV, Aug 21 2011

A122534 Numbers k such that Fibonacci(prime(prime(k))) is prime.

Original entry on oeis.org

1, 2, 3, 4, 9, 23, 25, 1456, 1616, 3865
Offset: 1

Views

Author

Alexander Adamchuk, Sep 18 2006

Keywords

Comments

The corresponding primes are {2,5,89,1597,99194853094755497,...}.
Numbers k such that A093308(k) is prime.
A277575(n) = prime(a(n)) is a prime in A119984.

Crossrefs

Formula

a(n) = PrimePi(A277575(n)) = PrimePi(PrimePi(A277284(n))). - Bobby Jacobs, Oct 26 2016

A163853 Primes 4 less than some Fibonacci number.

Original entry on oeis.org

17, 229, 373, 983, 4177, 6761, 17707, 4052739537877, 190392490709131, 19740274219868223163, 354224848179261915071, 11825896447871834976429068423, 3807901929474025356630904134047
Offset: 1

Views

Author

Keywords

Comments

Primes of the form A000045(i)-4, generated by i= 8, 13, 14, 16, 19, 20, 22,...
representing prime(j) at j= 4, 7, 50, 74, 166, 574, 870, 2033,...

Crossrefs

Programs

  • Mathematica
    Clear[lst,a,f,n,p]; a=4;lst={};Do[f=Fibonacci[n];If[PrimeQ[p=f-a]&&p> 1,AppendTo[lst,p]],{n,3*6!}];lst
    Select[Fibonacci[Range[4,300]]-4,PrimeQ] (* Harvey P. Dale, Jul 12 2025 *)

Extensions

Some indices to Fibonacci and prime sequences added by R. J. Mathar, Sep 17 2009

A178762 Prime numbers that are Fibonacci integers.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 61, 89, 107, 199, 211, 233, 281, 421, 521, 1103, 1597, 2161, 2207, 2521, 3001, 3571, 5779, 9349, 9901, 14503, 19801, 28657, 90481, 103681, 109441, 135721, 141961, 514229, 3010349, 6376021, 11128427
Offset: 1

Views

Author

T. D. Noe, Jun 10 2010

Keywords

Comments

A Fibonacci integer is a number that can be written as the product and/or quotient of Fibonacci numbers (A000045). For example, 107 is a Fibonacci integer because Fib(36)/(Fib(18)*Fib(3)*Fib(4)^3) = 107. Observe that the prime Fibonacci numbers (A005478) are a subset of these primes. Luca, Pomerance, and Wagner conjecture that this sequence is infinite. The paper's Remark 2 and sequences A152012, A178763, and A178764 are useful in finding these primes.

A256222 Largest Fibonacci number in the numerator of the 2^n sums generated from the set 1, 1/2, 1/3, ..., 1/n.

Original entry on oeis.org

0, 1, 3, 5, 13, 13, 13, 89, 89, 89, 1597, 1597, 1597, 1597, 1597, 1597, 17711, 17711, 17711, 28657, 28657, 28657, 28657, 1346269, 1346269, 1346269, 1346269, 24157817, 24157817, 24157817, 24157817, 24157817, 24157817, 39088169, 39088169, 39088169, 39088169
Offset: 0

Views

Author

Michel Lagneau, Mar 19 2015

Keywords

Comments

The prime Fibonacci numbers in the sequence are 3, 5, 13, 89, 1597, 28657, ...
For information about how often the numerator of these sums is a Fibonacci number, see A256220 and A256221.

Examples

			a(3) = 5 because we obtain the 5 subsets {1}, {1/2}, {1/3}, {1,1/2} and {1/2, 1/3} having 5 sums with Fibonacci numerators: 1, 1, 1, 1+1/2 = 3/2 and 1/2+1/3 = 5/6 => the greatest Fibonacci number is 5.
		

Crossrefs

Programs

  • Mathematica
    <<"DiscreteMath`Combinatorica`"; maxN=24; For[t={}; mx=0; i=0; n=0, n<=maxN, n++, While[i<2^n-1, i++; s=NthSubset[i, Range[n]]; k=Numerator[Plus@@(1/s)]; If[IntegerQ[Sqrt[5*k^2+4]]||IntegerQ[Sqrt[5*k^2-4]], If[k>mx, t=s]; mx=Max[mx, k]]]; Print[mx]]

Extensions

Corrected and extended by Alois P. Heinz, Mar 25 2015
a(30)-a(36) from Hiroaki Yamanouchi, Mar 30 2015

A082602 Number of primes between successive Fibonacci numbers (including possibly the Fibonacci numbers themselves).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 3, 5, 8, 11, 17, 24, 37, 55, 85, 126, 198, 297, 458, 704, 1088, 1674, 2602, 4029, 6263, 9738, 15187, 23705, 36981, 57909, 90550, 142033, 222855, 349862, 549903, 865019, 1361581, 2145191, 3381318, 5334509, 8419528, 13298631, 21014892
Offset: 1

Views

Author

Hauke Worpel (hw1(AT)email.com), May 23 2003

Keywords

Examples

			a(10) = 8 because the 10th Fibonacci number is 55, the 11th is 89 and the eight primes between them are 59, 61, 67, 71, 73, 79, 83 and 89.
		

Crossrefs

Programs

  • Magma
    [#PrimesInInterval(Fibonacci(n-1), Fibonacci(n)): n in [2..45]]; // Vincenzo Librandi, Jul 13 2017
  • Mathematica
    lst={};Do[p=0;Do[If[PrimeQ[a],p++ ],{a,Fibonacci[n],Fibonacci[n+1]}];AppendTo[lst,p],{n,50}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
  • PARI
    { a(n)= c=0; forprime(N=fibonacci(n),fibonacci(n+1),c=c+1); return(c); }
    

Extensions

Corrected and extended by Rick L. Shepherd, May 26 2003
a(43)-a(44) from Vincenzo Librandi, Jul 13 2017

A105758 Indices of prime hexanacci (or Fibonacci 6-step) numbers A001592 (using offset -4).

Original entry on oeis.org

3, 36, 37, 92, 660, 6091, 8415, 11467, 13686, 38831, 49828, 97148
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Comments

No other n < 30000.
This sequence uses the convention of the Noe and Post reference. Their indexing scheme differs by 4 from the indices in A001592. Sequence A249635 lists the indices of the same primes (A105759) using the indexing scheme as defined in A001592. - Robert Price, Nov 02 2014 [Edited by M. F. Hasler, Apr 22 2018]
a(13) > 3*10^5. - Robert Price, Nov 02 2014

Crossrefs

Cf. A105759 (prime Fibonacci 6-step numbers), A249635 (= a(n) + 4), A001592.
Cf. A000045, A000073, A000078 (and A001631), A001591, A122189 (or A066178), A079262, A104144, A122265, A168082, A168083 (Fibonacci, tribonacci, tetranacci numbers and other generalizations).
Cf. A005478, A092836, A104535, A105757, A105761, ... (primes in these sequence).
Cf. A001605, A303263, A303264 (and A104534 and A247027), A248757 (and A105756), ... (indices of primes in A000045, A000073, A000078, ...).

Programs

  • Mathematica
    a={1, 0, 0, 0, 0, 0}; lst={}; Do[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s; If[PrimeQ[s], AppendTo[lst, n]], {n, 30000}]; lst

Formula

a(n) = A249635(n) - 4. A105759(n) = A001592(A249635(n)) = A001592(a(n) + 4). - M. F. Hasler, Apr 22 2018

Extensions

a(10)-a(12) from Robert Price, Nov 02 2014
Edited by M. F. Hasler, Apr 22 2018
Previous Showing 21-30 of 89 results. Next