cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A002947 Continued fraction for cube root of 4.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 2, 3, 1, 3, 1, 30, 1, 4, 1, 2, 9, 6, 4, 1, 1, 2, 7, 2, 3, 2, 1, 6, 1, 1, 1, 25, 1, 7, 7, 1, 1, 1, 1, 266, 1, 3, 2, 1, 3, 60, 1, 5, 1, 8, 5, 6, 1, 4, 20, 1, 4, 1, 1, 14, 1, 4, 4, 1, 1, 1, 1, 7, 3, 1, 1, 2, 1, 3, 1, 4, 4, 1, 1, 1, 3, 1, 34, 8, 2, 10, 6, 3, 1, 2, 31, 1, 1, 1, 4, 3, 44, 1, 45
Offset: 0

Views

Author

Keywords

Examples

			4^(1/3) = 1.58740105196819947... = 1 + 1/(1 + 1/(1 + 1/(2 + 1/(2 + ...)))). - _Harry J. Smith_, May 08 2009
		

References

  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005480 (decimal expansion). - Harry J. Smith, May 08 2009
Cf. A002355, A002356 (convergents).

Programs

  • Magma
    [ContinuedFraction(4^(1/3))]; // Vincenzo Librandi, Aug 02 2015
  • Mathematica
    ContinuedFraction[4^(1/3), 80] (* Alonso del Arte, Jul 24 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(4^(1/3)); for (n=1, 20000, write("b002947.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 08 2009
    

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
Offset changed by Andrew Howroyd, Jul 04 2024

A329219 Decimal expansion of 2^(10/12) = 2^(5/6).

Original entry on oeis.org

1, 7, 8, 1, 7, 9, 7, 4, 3, 6, 2, 8, 0, 6, 7, 8, 6, 0, 9, 4, 8, 0, 4, 5, 2, 4, 1, 1, 1, 8, 1, 0, 2, 5, 0, 1, 5, 9, 7, 4, 4, 2, 5, 2, 3, 1, 7, 5, 6, 3, 2, 0, 8, 0, 6, 7, 6, 7, 5, 1, 3, 9, 8, 4, 5, 0, 3, 8, 6, 1, 6, 0, 6, 6, 3, 1, 5, 2, 4, 9, 8, 5, 2, 7, 5, 0, 5, 1, 5, 3, 4
Offset: 1

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

2^(10/12) is the ratio of the frequencies of the pitches in a minor seventh (e.g., D4-C5) in 12-tone equal temperament.

Examples

			1.78179743...
		

Crossrefs

Frequency ratios of musical intervals:
Perfect unison: 2^(0/12) = 1.0000000000
Minor second: 2^(1/12) = 1.0594630943... (A010774)
Major second: 2^(2/12) = 1.1224620483... (A010768)
Minor third: 2^(3/12) = 1.1892071150... (A010767)
Major third: 2^(4/12) = 1.2599210498... (A002580)
Perfect fourth: 2^(5/12) = 1.3348398541... (A329216)
Aug. fourth/
Dim. fifth: 2^(6/12) = 1.4142135623... (A002193)
Perfect fifth: 2^(7/12) = 1.4983070768... (A328229)
Minor sixth: 2^(8/12) = 1.5874010519... (A005480)
Major sixth: 2^(9/12) = 1.6817928305... (A011006)
Minor seventh: 2^(10/12) = 1.7817974362... (this sequence)
Major seventh: 2^(11/12) = 1.8877486253... (A329220)
Perfect octave: 2^(12/12) = 2.0000000000

Programs

  • Mathematica
    First[RealDigits[2^(5/6), 10, 100]] (* Paolo Xausa, Apr 27 2024 *)
  • PARI
    default(realprecision, 100); 2^(10/12)

Formula

Equals 2/A010768.
Equals Product_{k>=0} (1 + (-1)^k/(6*k + 1)). - Amiram Eldar, Jul 25 2020

A329216 Decimal expansion of 2^(5/12).

Original entry on oeis.org

1, 3, 3, 4, 8, 3, 9, 8, 5, 4, 1, 7, 0, 0, 3, 4, 3, 6, 4, 8, 3, 0, 8, 3, 1, 8, 8, 1, 1, 8, 4, 4, 5, 2, 7, 7, 4, 9, 1, 2, 3, 9, 0, 2, 1, 2, 6, 2, 5, 1, 9, 8, 2, 9, 6, 9, 3, 8, 9, 7, 0, 8, 1, 2, 1, 5, 7, 2, 2, 0, 6, 6, 7, 8, 4, 1, 1, 3, 9, 2, 0, 2, 3, 7, 1, 4, 8, 1, 5, 9, 1
Offset: 1

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

2^(5/12) is the ratio of the frequencies of the pitches in a perfect fourth (e.g., D4-G4) in 12-tone equal temperament.

Crossrefs

Frequency ratios of musical intervals:
Perfect unison: 2^(0/12) = 1.0000000000
Minor second: 2^(1/12) = 1.0594630943... (A010774)
Major second: 2^(2/12) = 1.1224620483... (A010768)
Minor third: 2^(3/12) = 1.1892071150... (A010767)
Major third: 2^(4/12) = 1.2599210498... (A002580)
Perfect fourth: 2^(5/12) = 1.3348398541... (this sequence)
Aug. fourth/
Dim. fifth: 2^(6/12) = 1.4142135623... (A002193)
Perfect fifth: 2^(7/12) = 1.4983070768... (A328229)
Minor sixth: 2^(8/12) = 1.5874010519... (A005480)
Major sixth: 2^(9/12) = 1.6817928305... (A011006)
Minor seventh: 2^(10/12) = 1.7817974362... (A329219)
Major seventh: 2^(11/12) = 1.8877486253... (A329220)
Perfect octave: 2^(12/12) = 2.0000000000

Programs

  • Mathematica
    First[RealDigits[2^(5/12), 10, 100]] (* Paolo Xausa, Apr 28 2024 *)
  • PARI
    default(realprecision, 100); 2^(5/12)

Formula

Equals 2/A328229.

A329220 Decimal expansion of 2^(11/12).

Original entry on oeis.org

1, 8, 8, 7, 7, 4, 8, 6, 2, 5, 3, 6, 3, 3, 8, 6, 9, 9, 3, 2, 8, 3, 8, 2, 6, 3, 1, 3, 3, 3, 5, 0, 6, 8, 7, 5, 2, 0, 1, 5, 1, 3, 6, 6, 0, 6, 6, 7, 7, 4, 8, 5, 6, 2, 7, 4, 8, 4, 2, 5, 0, 2, 8, 4, 6, 3, 6, 5, 7, 2, 9, 7, 5, 4, 7, 7, 4, 1, 3, 4, 0, 6, 0, 9, 0, 3, 9, 6, 9, 0, 9
Offset: 1

Views

Author

Jianing Song, Nov 08 2019

Keywords

Comments

2^(11/12) is the ratio of the frequencies of the pitches in a major seventh (e.g., D4-C#5) in 12-tone equal temperament.

Crossrefs

Frequency ratios of musical intervals:
Perfect unison: 2^(0/12) = 1.0000000000
Minor second: 2^(1/12) = 1.0594630943... (A010774)
Major second: 2^(2/12) = 1.1224620483... (A010768)
Minor third: 2^(3/12) = 1.1892071150... (A010767)
Major third: 2^(4/12) = 1.2599210498... (A002580)
Perfect fourth: 2^(5/12) = 1.3348398541... (A329216)
Aug. fourth/
Dim. fifth: 2^(6/12) = 1.4142135623... (A002193)
Perfect fifth: 2^(7/12) = 1.4983070768... (A328229)
Minor sixth: 2^(8/12) = 1.5874010519... (A005480)
Major sixth: 2^(9/12) = 1.6817928305... (A011006)
Minor seventh: 2^(10/12) = 1.7817974362... (A329219)
Major seventh: 2^(11/12) = 1.8877486253... (this sequence)
Perfect octave: 2^(12/12) = 2.0000000000

Programs

  • Mathematica
    First[RealDigits[2^(11/12), 10, 100]] (* Paolo Xausa, Apr 28 2024 *)
  • PARI
    default(realprecision, 100); 2^(11/12)

Formula

Equals 2/A010774.
Equals Product_{k>=0} (1 + (-1)^k/(12*k + 1)). - Amiram Eldar, Jul 29 2020

A347792 Beatty sequence for 2^(2/3).

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 46, 47, 49, 50, 52, 53, 55, 57, 58, 60, 61, 63, 65, 66, 68, 69, 71, 73, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 96, 98, 100, 101, 103
Offset: 0

Views

Author

Clark Kimberling, Oct 31 2021

Keywords

Crossrefs

Programs

A210973 Decimal expansion of cube root of (3/4).

Original entry on oeis.org

9, 0, 8, 5, 6, 0, 2, 9, 6, 4, 1, 6, 0, 6, 9, 8, 2, 9, 4, 4, 5, 6, 0, 5, 8, 7, 8, 1, 6, 3, 6, 3, 0, 2, 5, 1, 2, 1, 4, 1, 0, 5, 2, 3, 1, 5, 7, 0, 6, 0, 9, 8, 3, 5, 7, 4, 0, 6, 6, 7, 1, 4, 8, 9, 6, 5, 6, 5, 4, 8, 6, 9, 7, 2, 9
Offset: 0

Views

Author

Omar E. Pol, Aug 09 2012

Keywords

Comments

Radius of a sphere with volume Pi.

Examples

			0.908560296416069829445605878... =  A002581 / A005480.
		

Crossrefs

Cube root of A152627.
Cf. A005486.

Programs

Formula

(3/4)^(1/3).

A246722 Decimal expansion of Hermite's constant gamma_7 = 2^(6/7).

Original entry on oeis.org

1, 8, 1, 1, 4, 4, 7, 3, 2, 8, 5, 2, 7, 8, 1, 3, 3, 4, 3, 1, 8, 8, 3, 4, 5, 7, 4, 6, 4, 3, 0, 2, 0, 6, 3, 7, 5, 4, 0, 0, 8, 9, 1, 7, 6, 2, 5, 1, 5, 8, 7, 4, 7, 1, 0, 2, 3, 7, 4, 1, 6, 2, 6, 2, 7, 6, 8, 8, 4, 4, 9, 3, 4, 6, 2, 7, 1, 2, 5, 6, 7, 3, 9, 0, 9, 5, 2, 8, 7, 8, 7, 7, 8, 2, 0, 7, 1, 5, 5, 7, 4, 4, 5
Offset: 1

Views

Author

Jean-François Alcover, Sep 02 2014

Keywords

Comments

Also seventh root of 64. - Alonso del Arte, Feb 07 2015

Examples

			1.81144732852781334318834574643020637540089176251587471...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.7 Hermite's Constants, p. 507.

Crossrefs

Cf. A222071 (Hermite's delta_7), A011149, A005480.

Programs

  • Mathematica
    RealDigits[2^(6/7), 10, 103] // First
  • PARI
    sqrtn(64, 7) \\ Michel Marcus, Feb 08 2015

Formula

Equals Product_{k>=0} (1 + (-1)^k/(7*k + 1)). - Amiram Eldar, Jul 29 2020

A251735 Decimal expansion of Sum_{n>=1} (-1)^(n+1)/n^(1/3).

Original entry on oeis.org

5, 7, 1, 7, 5, 2, 8, 3, 3, 8, 2, 5, 2, 7, 7, 6, 6, 4, 9, 3, 6, 4, 7, 5, 6, 8, 1, 1, 3, 6, 0, 3, 2, 6, 5, 5, 2, 4, 3, 1, 4, 8, 1, 5, 7, 4, 7, 3, 2, 5, 4, 1, 1, 5, 8, 0, 6, 1, 4, 7, 5, 0, 8, 2, 8, 0, 3, 1, 8, 4, 9, 1, 1, 9, 3, 9, 9, 3
Offset: 0

Views

Author

R. J. Mathar, Dec 07 2014

Keywords

Comments

Cubic root analog of A113024.

Examples

			0.57175283382527766493...
		

Crossrefs

Programs

  • Maple
    Zeta(1/3)*(1-root[3](4)) ; evalf(%) ;
  • Mathematica
    RealDigits[-Zeta[1/3]*(4^(1/3) - 1), 10, 100][[1]] (* G. C. Greubel, Apr 15 2018 *)
  • PARI
    -zeta(1/3)*(4^(1/3)-1) \\ Charles R Greathouse IV, Apr 20 2016

Formula

Equals 1 - 1/A002580 + 1/A002581 - 1/A005480 + ... = A251734 *(1 - A005480).

A317969 Decimal expansion of (2^(1/3)-1)^(1/3).

Original entry on oeis.org

6, 3, 8, 1, 8, 5, 8, 2, 0, 8, 6, 0, 6, 4, 4, 1, 5, 3, 0, 1, 5, 5, 0, 3, 6, 5, 9, 4, 4, 4, 0, 6, 7, 7, 0, 1, 2, 6, 5, 1, 5, 7, 5, 4, 3, 9, 7, 7, 9, 9, 7, 6, 8, 3, 4, 2, 1, 0, 6, 2, 0, 8, 1, 5, 8, 0, 5, 7, 5, 4, 8, 5, 1, 3, 9, 7, 0, 7, 9, 2, 5, 0, 2, 7, 6
Offset: 0

Views

Author

N. J. A. Sloane, Aug 27 2018

Keywords

Comments

(2^(1/3)-1)^(1/3) = (1/9)^(1/3) - (2/9)^(1/3) + (4/9)^(1/3) is a famous and remarkable identity of Ramanujan's.
Ramanujan's question 1076 (ii), see Berndt and Rankin in References: Show that (4*(2/3)^(1/3)-5*(1/3)^(1/3))^(1/8) = (4/9)^(1/3)-(2/9)^(1/3)+(1/9)^(1/3). - Hugo Pfoertner, Aug 28 2018

Examples

			0.638185820860644153015503659444067701265157543977997683421...
		

References

  • B. C. Berndt and R. A. Rankin, Ramanujan: Essays and Surveys, American Mathematical Society, 2001, ISBN 0-8218-2624-7, page 222 (JIMS 11, page 199).
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.1.2, p. 4.
  • S. Ramanujan, Coll. Papers, Chelsea, 1962, page 331, Question 682; page 334 Question 1076.

Crossrefs

Programs

  • Maple
    evalf((4*(2/3)^(1/3)-5*(1/3)^(1/3))^(1/8)); # Muniru A Asiru, Aug 28 2018
  • Mathematica
    RealDigits[N[Power[Power[2, (3)^-1] - 1, (3)^-1], 100]] (* Peter Cullen Burbery, Apr 09 2022 *)
  • PARI
    (4*(2/3)^(1/3)-5*(1/3)^(1/3))^(1/8) /* Hugo Pfoertner Aug 28 2018 */
    
  • PARI
    sqrtn(1/9, 3) - sqrtn(2/9, 3) + sqrtn(4/9, 3) \\ Michel Marcus, Jan 07 2022

Formula

From Michel Marcus, Jan 08 2022: (Start)
Equals (A002580-1)^(1/3).
k^(3*n) = x(n) + A002580*y(n) + A005480*z(n) where k is this constant z(n) = A108369(n-1), y(n) = z(n)+z(n+1), x(n) = y(n)+y(n+1); A002580 and A005480 are the cube root of 2 and 4. (End)
Minimal polynomial: 1 - 3*x^3 - 3*x^6 - x^9. - Stefano Spezia, Oct 15 2024

A383267 Decimal expansion of (4/11)^(1/3).

Original entry on oeis.org

7, 1, 3, 7, 6, 5, 8, 5, 5, 5, 0, 3, 6, 0, 8, 1, 7, 0, 6, 7, 1, 8, 9, 9, 9, 9, 1, 7, 6, 2, 6, 6, 1, 2, 4, 7, 5, 9, 0, 7, 9, 6, 5, 4, 7, 5, 8, 9, 0, 3, 8, 0, 6, 6, 9, 1, 5, 6, 2, 6, 7, 5, 2, 0, 8, 4, 5, 8, 3, 1, 4, 7, 0, 6, 7, 7, 1, 8, 7, 5, 6, 4, 6, 3, 2, 4, 0, 3, 3, 9, 9, 3, 2, 2, 6, 8, 1, 7, 1, 7, 2, 4, 4, 6, 4
Offset: 0

Views

Author

Arkadiusz Wesolowski, Apr 21 2025

Keywords

Comments

In the standard cosmology, the temperature of the free-streaming neutrinos which formed the cosmic neutrino background is (4/11)^(1/3) of the relic photon temperature after the electron-positron annihilation in the early universe (assuming that all electrons and positrons annihilated into photons).

Examples

			0.713765855503608170671899991762661247590796547589038066915626752084583...
		

References

  • E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley, Redwood City, CA, 1990, p. 503 Appendix A.
  • R. E. Lopez, S. Dodelson, A. Heckler and M. S. Turner, Precision detection of the cosmic neutrino background, Physical Review Letters 82 (1999) 3952-3955, p. 3952.
  • Steven Weinberg, Gravitation and Cosmology Principles and Applications of the General Theory of Relativity, John Wiley, New York, 1972, p. 537.

Crossrefs

Cf. A111728.

Programs

  • Magma
    SetDefaultRealField(RealField(106)); n:=(4/11)^(1/3); Reverse(Intseq(Floor(10^105*n)));
    
  • Mathematica
    RealDigits[(4/11)^(1/3),10,105][[1]] (* Stefano Spezia, Apr 25 2025 *)
  • PARI
    (4/11)^(1/3)

Formula

Equals 1/A111728 = A005480/A010583.
Previous Showing 11-20 of 20 results.