cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 90 results. Next

A164015 5 times centered pentagonal numbers: 5*(5*n^2 + 5*n + 2)/2.

Original entry on oeis.org

5, 30, 80, 155, 255, 380, 530, 705, 905, 1130, 1380, 1655, 1955, 2280, 2630, 3005, 3405, 3830, 4280, 4755, 5255, 5780, 6330, 6905, 7505, 8130, 8780, 9455, 10155, 10880, 11630, 12405, 13205, 14030, 14880, 15755, 16655, 17580, 18530
Offset: 0

Views

Author

Omar E. Pol, Nov 07 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[5(5n^2+5n+2)/2,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{5,30,80},40] (* Harvey P. Dale, Oct 08 2011 *)
  • PARI
    a(n)=25*n*(n+1)/2+5 \\ Charles R Greathouse IV, Jul 17 2011

Formula

a(n) = 5*A005891(n).
a(n) = a(n-1) + 25*n (with a(0)=5). - Vincenzo Librandi, Nov 30 2010
a(0)=5, a(1)=30, a(2)=80, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Oct 08 2011
G.f.: (5*(x*(x+3)+1))/(1-x)^3. - Harvey P. Dale, Oct 08 2011
E.g.f.: (5/2)*(2 + 10*x + 5*x^2)*exp(x). - G. C. Greubel, Sep 06 2017

A362863 Centered hecatonicosachoral numbers.

Original entry on oeis.org

1, 1441, 11521, 44641, 122401, 273601, 534241, 947521, 1563841, 2440801, 3643201, 5243041, 7319521, 9959041, 13255201, 17308801, 22227841, 28127521, 35130241, 43365601, 52970401, 64088641, 76871521, 91477441, 108072001, 126828001, 147925441, 171551521, 197900641
Offset: 1

Views

Author

Léo Cymrot Cymbalista, May 06 2023

Keywords

Comments

A hecatonicosachoral number is a centered figurate number that represents a hecatonicosachoron, which is a four-dimensional regular polytope composed of 120 cells.
One of the 6 centered regular polichoral (centered pentachoral, centered hexadecachoral, centered octachoral, centered icositetrachoral, centered hexacosichoral and centered hecatonicosachoral) numbers.

Crossrefs

Cf. A005891 (2D), A005904 (3D), A006322, A151989.

Programs

  • Mathematica
    Table[300*n^4 - 600*n^3 + 420*n^2 - 120*n + 1, {n, 1, 100}]

Formula

a(n) = 300*n^4 - 600*n^3 + 420*n^2 - 120*n + 1.
a(n) = 1440*A006322(n-1) + 1 for n > 1.
a(n) = 288*(A151989(n-1)-1)/25 + 1.
G.f.: x*(1 + 1436*x + 4326*x^2 + 1436*x^3 + x^4)/(1 - x)^5. - Stefano Spezia, May 12 2023

A364610 Centered pentagonal numbers which are products of three distinct primes.

Original entry on oeis.org

1266, 1626, 2806, 3706, 4731, 6126, 7426, 7701, 9766, 10726, 13506, 15801, 18706, 19581, 25251, 26266, 26781, 31641, 35106, 36906, 40006, 50766, 52926, 56626, 57381, 62806, 69306, 71826, 74391, 76126, 85101, 90726, 93606, 95551, 96531, 99501, 106606, 108681, 109726, 117181, 121551, 123766
Offset: 1

Views

Author

Massimo Kofler, Sep 07 2023

Keywords

Examples

			A005891(22) = 1266 = (5*22^2 + 5*22 + 2)/2 = 2 * 3 * 211.
A005891(25) = 1626 = (5*25^2 + 5*25 + 2)/2 = 2 * 3 * 271.
A005891(33) = 2806 = (5*33^2 + 5*33 + 2)/2 = 2 * 23 * 61.
		

Crossrefs

Intersection of A005891 and A007304.

Programs

  • Mathematica
    Select[Table[5*n*(n + 1)/2 + 1, {n, 0, 225}], FactorInteger[#][[;; , 2]] == {1, 1, 1} &] (* Amiram Eldar, Sep 07 2023 *)

A071910 a(n) = t(n)*t(n+1)*t(n+2), where t() are the triangular numbers.

Original entry on oeis.org

0, 18, 180, 900, 3150, 8820, 21168, 45360, 89100, 163350, 283140, 468468, 745290, 1146600, 1713600, 2496960, 3558168, 4970970, 6822900, 9216900, 12273030, 16130268, 20948400, 26910000, 34222500, 43120350, 53867268, 66758580, 82123650, 100328400, 121777920
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2002

Keywords

Comments

a(n) is also the number of three-dimensional cage assemblies such that the assembly is not a cube. See also A052149 for the two-dimensional version and to A059827 for the non-exclusive version. - Alejandro Rodriguez, Oct 20 2020

Crossrefs

Cf. A006542, (first differences of a(n) /18) A006414, (second differences of a(n) /18) A006322, (third differences of a(n) /18) A004068, (fourth differences of a(n) /18) A005891, (fifth differences of a(n) /18) A008706.

Programs

  • Mathematica
    Join[{0},Times@@@Partition[Accumulate[Range[40]],3,1]] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,18,180,900,3150,8820,21168},40] (* Harvey P. Dale, Aug 08 2025 *)
  • PARI
    t(n) = n*(n+1)/2;
    a(n) = t(n)*t(n+1)*t(n+2); \\ Michel Marcus, Oct 21 2015

Formula

a(n) = 18*A006542(n+3). - Vladeta Jovovic, Jun 14 2002
G.f.: 18*x*(1+3*x+x^2)/(1-x)^7. - Vladeta Jovovic, Jun 14 2002
a(n) = ((n+1)*(n+2))^3/8 - Sum_{i=1..n+1} i^3. - Jon Perry, Feb 13 2004
a(n) = C(2+n, n)*C(3+n, 1+n)*C(4+n, 2+n). - Zerinvary Lajos, Jul 29 2005
a(n) = A059827(n+1) - A000537(n+1). - Michel Marcus, Oct 21 2015

A121722 Triangle T(n,k) = 1 + k*n*(n+1)/2, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 4, 7, 1, 7, 13, 19, 1, 11, 21, 31, 41, 1, 16, 31, 46, 61, 76, 1, 22, 43, 64, 85, 106, 127, 1, 29, 57, 85, 113, 141, 169, 197, 1, 37, 73, 109, 145, 181, 217, 253, 289, 1, 46, 91, 136, 181, 226, 271, 316, 361, 406, 1, 56, 111, 166, 221, 276, 331, 386, 441, 496, 551
Offset: 0

Views

Author

Roger L. Bagula, Sep 08 2006

Keywords

Comments

A triangular form based on the Hex number recursion: a(n) = 2*a(n-1) - a(n-1) + 6: A003215 form as generalized to Integer m.
A solution for the general type for m held constant: a(n) = 2*a(n-1) - a(n-2) + m, with first two values as {1, 1+m}.

Examples

			Triangle begins as:
  1;
  1,  2;
  1,  4,  7;
  1,  7, 13, 19;
  1, 11, 21, 31, 41;
  1, 16, 31, 46, 61, 76;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> 1 + k*Binomial(n+1,2) ))); # G. C. Greubel, Nov 21 2019
  • Magma
    [1+k*Binomial(n+1,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 21 2019
    
  • Maple
    seq(seq( 1 + k*binomial(n+1,2), k=0..n), n=0..10); # G. C. Greubel, Nov 21 2019
  • Mathematica
    f[n_Integer] = Module[{a}, a[n]/.RSolve[{a[n]==2*a[n-1]-a[n-2]+m, a[0] ==1, a[1]==1+m}, a[n], n][[1]]//FullSimplify] (* formula of triangle *)
    Table[Table[1+k*n*(1+n)/2, {k,0,n}], {n,0,10}]//Flatten
  • PARI
    T(n, k) = 1 + k*binomial(n+1,2); \\ G. C. Greubel, Nov 21 2019
    
  • Sage
    [[1+k*binomial(n+1,2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 21 2019
    

Formula

T(n, k) = 1 + k*binomial(n+1,2).

Extensions

Edited by G. C. Greubel, Nov 21 2019

A131751 Numbers that are both centered triangular and centered pentagonal.

Original entry on oeis.org

1, 31, 1891, 117181, 7263301, 450207451, 27905598631, 1729696907641, 107213302675081, 6645495068947351, 411913480972060651, 25531990325198812981, 1582571486681354344141, 98093900183918770523731, 6080239239916282418127151, 376876738974625591153359601
Offset: 1

Views

Author

Richard Choulet, Sep 20 2007

Keywords

Comments

We solve 0.5*(3*p^2+3*p+2)=0.5*(5*r^2+5*r+2), i.e., 3*(2*p+1)^2=5*(2*r+1)^2-2.
The Diophantine equation 3*X^2=5*Y^2-2is such that : X is given by A057080 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2+10)^0.5, Y is given by A070997 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2-6)^0.5 while r is given by the sequence 0,3,27,216,1704,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*(60*a(n)^2+60*a(n)+9)^0.5, p is given by the sequence 0,4,35,279,2200,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*sqrt(60*a(n)^2+60*a(n)+25).

Crossrefs

Programs

  • Maple
    A131751 := proc(n) coeftayl(x*(1-32*x+x^2)/(1-x)/(1-62*x+x^2),x=0,n) ; end: seq(A131751(n),n=1..20) ; # R. J. Mathar, Oct 24 2007
  • Mathematica
    LinearRecurrence[{63,-63,1},{1,31,1891},20] (* Harvey P. Dale, Oct 01 2017 *)

Formula

a(n+2) = 62*a(n+1) - a(n) - 30, a(n+1) = 31*a(n) - 15 + sqrt(960*a(n)^2 - 960*a(n)+225).
G.f.: f(z) = a(1)*z+a(2)*z^2+... = z*(1-32*z+z^2)/((1-z)*(1-62*z+z^2)).
A005891 INTERSECT A005448. - R. J. Mathar, Oct 24 2007

Extensions

Corrected and extended by R. J. Mathar, Oct 24 2007

A140702 Main diagonal of array A(k,n) = product of first n centered n-gonal numbers.

Original entry on oeis.org

40, 1625, 151776, 27316471, 8429601664, 4108830350625, 2977546171600000, 3062351613203813051, 4308809606735976861696, 8050856986181775515023417, 19490752185922086291273856000, 59888297825402713913058605859375, 229474927848540723655596345639141376
Offset: 3

Views

Author

Jonathan Vos Post, May 24 2008

Keywords

Comments

For analog with regular (not centered) n-gonal numbers, see A133401.
Array A(k,n) = k-th polygorial(n,k) begins:
k | CenteredPolygorial(n,k)
---+-------------------------
3 | 1 4 40 760 23560 1083760 69360640 5895654400 A140701
4 | 1 5 65 1625 66625 4064125 345450625 39035920625
5 | 1 6 96 2976 151776 11534976 1222707456 172401751296
6 | 1 7 133 4921 300181 27316471 3469191817 586293417073
7 | 1 8 176 7568 537328 56956768 8429601664 1660631527808
8 | 1 9 225 11025 893025 108056025 18261468225 4108830350625
9 | 1 10 280 15400 1401400 190590400 36212176000 9161680528000

Examples

			a(3) = 3rd centered polygorial number polygorial(3,3) = A140701(3) = product of the first 3 centered triangular numbers = 1 * 4 * 10 = 40.
a(4) = 4th centered polygorial number centered polygorial(4,4) = product of the first 4 centered square numbers A001844 = 1 * 5 * 13 * 25 = 1625.
a(5) = 5th centered pentagorial number centered polygorial(5,5) = product of the first 5 centered pentagonal numbers A005891 = 1 * 5 * 12 * 22 * 35 = 151776.
a(6) = 6th centered hexagorial number centered polygorial(6,6) = product of the first 6 centered hexagonal numbers A003215 = 1 * 7 * 19 * 37 * 61 * 91 = 27316471.
		

Crossrefs

Programs

Formula

a(n) ~ Pi * n^(3*n-1) / (exp(2*n) * 2^(n-2)). - Vaclav Kotesovec, Jul 11 2015

Extensions

a(9) corrected and more terms from Nathaniel Johnston, Oct 01 2011

A193248 Truncated dodecahedron, and truncated icosahedron with faces of centered polygons.

Original entry on oeis.org

1, 93, 455, 1267, 2709, 4961, 8203, 12615, 18377, 25669, 34671, 45563, 58525, 73737, 91379, 111631, 134673, 160685, 189847, 222339, 258341, 298033, 341595, 389207, 441049, 497301, 558143, 623755, 694317, 770009, 851011, 937503, 1029665, 1127677, 1231719
Offset: 1

Views

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a truncated dodecahedron or truncated icosahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448) and centered decagons (A062786)] & [centered hexagons (A003215) and centered pentagons (A005891)] respectively.

Crossrefs

Programs

  • Magma
    [30*n^3-45*n^2+17*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
    
  • Mathematica
    Table[30n^3-45n^2+17n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,93,455,1267},40] (* Harvey P. Dale, Aug 28 2011 *)
  • PARI
    vector(40, n, 30*n^3 - 45*n^2 + 17*n - 1) \\ G. C. Greubel, Nov 10 2018

Formula

a(n) = 30*n^3 - 45*n^2 + 17*n - 1.
G.f.: x*(1+x)*(x^2 + 88*x + 1) / (x-1)^4. - R. J. Mathar, Aug 26 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=93, a(3)=455, a(4)=1267. - Harvey P. Dale, Aug 28 2011
E.g.f.: 1 - (1 - 2*x - 45*x^2 - 30*x^3)*exp(x). - G. C. Greubel, Nov 10 2018

A249852 a(n) is the total number of pentagons on the left or the right of the vertical symmetry axis of a pentagon expansion (vertex to vertex) after n iterations.

Original entry on oeis.org

0, 2, 7, 14, 23, 35, 50, 67, 86, 108, 133, 160, 189, 221, 256, 293, 332, 374, 419, 466, 515, 567, 622, 679, 738, 800, 865, 932, 1001, 1073, 1148, 1225, 1304, 1386, 1471, 1558, 1647, 1739, 1834, 1931, 2030, 2132, 2237, 2344, 2453, 2565, 2680, 2797, 2916, 3038, 3163, 3290, 3419
Offset: 0

Views

Author

Kival Ngaokrajang, Mar 07 2015

Keywords

Comments

a(n) is also total number of pentagrams on the left or the right of the vertical symmetry axis of a pentagram expansion (vertex to vertex) after n iterations.
The total pentagons (or pentagrams) after n iterations is A005891. See illustration in the links.

Crossrefs

Programs

  • PARI
    {a=2; s=2; d=2; print1(0,", ",s,", "); for(n=2, 100, if(Mod(n,4)==3, d=2, if(Mod(n,4)==4, d=2, d=3)); a=a+d; s=s+a; print1(s, ", ");)}

Formula

Conjectures from Colin Barker, Mar 07 2015: (Start)
a(n) = 3*a(n-1)-4*a(n-2)+4*a(n-3)-3*a(n-4)+a(n-5).
G.f.: -x*(x^3+x^2+x+2) / ((x-1)^3*(x^2+1)). (End)
Conjectured e.g.f.: (exp(x)*(1 + 8*x + 5*x^2) - cos(x) - sin(x))/4. - Stefano Spezia, Feb 23 2025

A338491 Least number of centered pentagonal numbers needed to represent n.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 3, 4, 5, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 30 2020

Keywords

Crossrefs

Previous Showing 61-70 of 90 results. Next