cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 580 results. Next

A299289 Coordination sequence for "tsi" 3D uniform tiling.

Original entry on oeis.org

1, 8, 28, 60, 106, 164, 236, 320, 418, 528, 652, 788, 938, 1100, 1276, 1464, 1666, 1880, 2108, 2348, 2602, 2868, 3148, 3440, 3746, 4064, 4396, 4740, 5098, 5468, 5852, 6248, 6658, 7080, 7516, 7964, 8426, 8900, 9388, 9888, 10402, 10928
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #12.

Crossrefs

See A299290 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Formula

Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4) / ((1 - x)^3*(1 + x)).
a(n) = (13*n^2 + 4) / 2 for n>0 and even.
a(n) = (13*n^2 + 3) / 2 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4. (End)
Conjectured e.g.f.: ((4 + 13*x + 13*x^2)*cosh(x) + (3 + 13*x + 13*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Jun 08 2024

A299290 Partial sums of A299289.

Original entry on oeis.org

1, 9, 37, 97, 203, 367, 603, 923, 1341, 1869, 2521, 3309, 4247, 5347, 6623, 8087, 9753, 11633, 13741, 16089, 18691, 21559, 24707, 28147, 31893, 35957, 40353, 45093, 50191, 55659, 61511, 67759, 74417, 81497, 89013, 96977, 105403, 114303, 123691
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

Cf. A299289.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Formula

Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4) / ((1 - x)^4*(1 + x)).
a(n) = (12 + 34*n + 39*n^2 + 26*n^3) / 12 for n even.
a(n) = (9 + 34*n + 39*n^2 + 26*n^3) / 12 for n odd.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4.
(End)

A299291 Coordination sequence for "ubt" 3D uniform tiling.

Original entry on oeis.org

1, 5, 14, 29, 56, 85, 130, 181, 226, 299, 382, 445, 538, 635, 708, 845, 962, 1079, 1218, 1363, 1456, 1671, 1808, 1987, 2170, 2365, 2470, 2777, 2920, 3169, 3394, 3641, 3750, 4163, 4298, 4625, 4890, 5191, 5296, 5829, 5942, 6355, 6658, 7015, 7108, 7775, 7852, 8359, 8698, 9113, 9186
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 80 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #10.

Crossrefs

See A299292 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{-1,0,1,1,0,2,2,0,-2,-2,0,-1,-1,0,1,1},{1,5,14,29,56,85,130,181,226,299,382,445,538,635,708,845,962,1079,1218,1363,1456},60] (* Harvey P. Dale, Aug 20 2021 *)
  • PARI
    Vec((12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 + x)*(1 - x^3)*(1 - x^6)^2) + O(x^50)) \\ Colin Barker, Feb 14 2018

Formula

G.f.: (12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 + x)*(1 - x^3)*(1 - x^6)^2). - N. J. A. Sloane, Feb 13 2018
a(n) = -a(n-1) + a(n-3) + a(n-4) + 2*a(n-6) + 2*a(n-7) - 2*a(n-9) - 2*a(n-10) - a(n-12) - a(n-13) + a(n-15) + a(n-16) for n>17. - Colin Barker, Feb 14 2018

A299292 Partial sums of A299291.

Original entry on oeis.org

1, 6, 20, 49, 105, 190, 320, 501, 727, 1026, 1408, 1853, 2391, 3026, 3734, 4579, 5541, 6620, 7838, 9201, 10657, 12328, 14136, 16123, 18293, 20658, 23128, 25905, 28825, 31994, 35388, 39029, 42779, 46942, 51240, 55865, 60755, 65946, 71242, 77071, 83013, 89368, 96026
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 80 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

Cf. A299291.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • PARI
    Vec((12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^6)^2) + O(x^50)) \\ Colin Barker, Feb 14 2018

Formula

G.f.: (12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^6)^2).
a(n) = a(n-2) + a(n-3) - a(n-5) + 2*a(n-6) - 2*a(n-8) - 2*a(n-9) + 2*a(n-11) - a(n-12) + a(n-14) + a(n-15) - a(n-17) for n>17. - Colin Barker, Feb 14 2018

A206399 a(0) = 1; for n > 0, a(n) = 41*n^2 + 2.

Original entry on oeis.org

1, 43, 166, 371, 658, 1027, 1478, 2011, 2626, 3323, 4102, 4963, 5906, 6931, 8038, 9227, 10498, 11851, 13286, 14803, 16402, 18083, 19846, 21691, 23618, 25627, 27718, 29891, 32146, 34483, 36902, 39403, 41986, 44651, 47398, 50227, 53138, 56131, 59206, 62363, 65602
Offset: 0

Views

Author

Bruno Berselli, Feb 07 2012

Keywords

Comments

Apart from the first term, numbers of the form (r^2 + 2*s^2)*n^2 + 2 = (r*n)^2 + (s*n - 1)^2 + (s*n + 1)^2: in this case is r = 3, s = 4. After 1, all terms are in A000408.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 41*n^2+2: n in [0..39]];
    
  • Magma
    I:=[1,43,166,371]; [n le 4 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..41]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Join[{1}, 41 Range[39]^2 + 2]
    CoefficientList[Series[(1 + x) (1 + 39 x + x^2) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=if(n,41*n^2+2,1) \\ Charles R Greathouse IV, Sep 24 2015

Formula

O.g.f.: (1 + x)*(1 + 39*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. - Wesley Ivan Hurt, Dec 18 2020
E.g.f.: exp(x)*(41*x^2 + 41*x + 2) - 1. - Elmo R. Oliveira, Nov 29 2024

A005914 Number of points on surface of hexagonal prism: 12*n^2 + 2 for n > 0 (coordination sequence for W(2)).

Original entry on oeis.org

1, 14, 50, 110, 194, 302, 434, 590, 770, 974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294, 5810, 6350, 6914, 7502, 8114, 8750, 9410, 10094, 10802, 11534, 12290, 13070, 13874, 14702, 15554, 16430, 17330, 18254, 19202, 20174, 21170
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is equal to the number of functions f:{1,2,3,4}->{1,2,...,n,n+1} such that Im(f) contains 2 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Feb 24 2007
Equals binomial transform of [1, 13, 23, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 22 2008
First bisection of A005918. After 1, all terms are in A000408 (see Formula section). - Bruno Berselli, Feb 07 2012
Also sequence found by reading the segment (1, 14) together with the line from 14, in the direction 14, 50, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Nov 02 2012
Unique sequence such that for all n > 0, n*a(1) + (n-1)*a(2) + (n-3)*a(3) + ... + 2*a(2) + a(1) = n^4. - Warren Breslow, Dec 12 2014

References

  • Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th Ed., 1994, TYPIX search code (229) cI2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences of A005917.

Programs

Formula

G.f.: (1+x)*(1+10*x+x^2)/(1-x)^3. - Simon Plouffe (see MAPLE line)
a(n) = (2n-1)^2 + (2n)^2 + (2n+1)^2 for n > 0. - Bruno Berselli, Jan 30 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=14, a(2)=50, a(3)=110. - Harvey P. Dale, Oct 09 2012
E.g.f.: exp(x)*(12*x^2 + 12*x + 2) - 1. - Alois P. Heinz, Sep 10 2013
From Bruce J. Nicholson, Jan 19 2019: (Start)
Sum_{i=1..n} a(i) = A005917(n+1).
a(n) = A003154(n) + A003154(n+1). (End)
From Amiram Eldar, Jan 27 2022: (Start)
Sum_{n>=0} 1/a(n) = ((Pi/sqrt(6))*coth(Pi/sqrt(6)) + 3)/4.
Sum_{n>=0} (-1)^n/a(n) = ((Pi/sqrt(6))*cosech(Pi/sqrt(6)) + 3)/4. (End)

A010014 a(0) = 1, a(n) = 24*n^2 + 2 for n>0.

Original entry on oeis.org

1, 26, 98, 218, 386, 602, 866, 1178, 1538, 1946, 2402, 2906, 3458, 4058, 4706, 5402, 6146, 6938, 7778, 8666, 9602, 10586, 11618, 12698, 13826, 15002, 16226, 17498, 18818, 20186, 21602, 23066, 24578, 26138, 27746, 29402, 31106, 32858, 34658, 36506, 38402, 40346
Offset: 0

Views

Author

Keywords

Comments

Number of points of L_infinity norm n in the simple cubic lattice Z^3. - N. J. A. Sloane, Apr 15 2008
Numbers of cubes needed to completely "cover" another cube. - Xavier Acloque, Oct 20 2003
First bisection of A005897. After 1, all terms are in A000408. - Bruno Berselli, Feb 06 2012

Crossrefs

Cf. A206399.

Programs

  • Mathematica
    Join[{1}, 24 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
  • PARI
    a(n) = if (n==0, 1, 24*n^2 + 2);
    vector(40, n, a(n-1)) \\ Altug Alkan, Sep 29 2015

Formula

a(n) = (2*n+1)^3 - (2*n-1)^3 for n >= 1. - Xavier Acloque, Oct 20 2003
G.f.: (1+x)*(1+22*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
a(n) = (2*n-1)^2 + (2*n+1)^2 + (4*n)^2 for n>0. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*24+2)*exp(x)-1. - Gopinath A. R., Feb 14 2012
a(n) = A005899(n) + A195322(n), n > 0. - R. J. Cano, Sep 29 2015
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(3)/24*Pi*coth(Pi*sqrt(3)/6) = 1.065052868574... - R. J. Mathar, May 07 2024
a(n) = 2*A158480(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069190(n)+A069190(n+1). - R. J. Mathar, May 07 2024

Extensions

More terms from Xavier Acloque, Oct 20 2003

A009927 Coordination sequence for Cr3Si, Si position.

Original entry on oeis.org

1, 12, 50, 120, 218, 344, 546, 728, 902, 1212, 1526, 1784, 2154, 2552, 2954, 3432, 3854, 4340, 4998, 5504, 6002, 6768, 7442, 8024, 8814, 9572, 10334, 11232, 11978, 12824, 13938, 14768, 15590, 16812, 17846, 18752, 19962, 21080, 22202, 23520
Offset: 0

Views

Author

Keywords

References

  • Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (223) cP8.

Formula

G.f.: (1+12*x+51*x^2+130*x^3+243*x^4+350*x^5+450*x^6+418*x^7 +327*x^8+182*x^9+51*x^10+16*x^11-7*x^12+8*x^13+12*x^14)/ ((1+x)*(1+x^2)^2*(1+x+x^2)^2*(1-x)^3). - Robert Israel, Dec 18 2015
Empirical: a(n) = (1903/72) + (3/8)*(-1)^n + 19*KroneckerDelta[n,0] - 8*KroneckerDelta[n,1] - 12*KroneckerDelta[n,2] + ((n+1)/12)*(187*n-273) - (32*sqrt(3)/27)*((13/2)*cos((4n+1)*Pi/6) + sin(2n*Pi/3)) - (3*sqrt(26)/2)*(-1)^n*cos(n*Pi/2 + arctan(1/5)) - (3/4)*i^n*(1+(-1)^n)*(n+2). - G. C. Greubel, Dec 18 2015
G.f.: (1 + 12*x + 50*x^2 + 118*x^3 + 192*x^4 + 220*x^5 + 207*x^6 + 68*x^7-123*x^8-236*x^9-276*x^10-166*x^11-58*x^12-8*x^13 + 19*x^14-8*x^15-12*x^16) / (1-x^3)^2 / (1-x^4)^2. - Sean A. Irvine, Mar 15 2018

A008084 Coordination sequence T1 for Zeolite Code ACO, ASV, EDI, and THO.

Original entry on oeis.org

1, 4, 9, 19, 35, 52, 72, 100, 131, 163, 201, 244, 290, 340, 393, 451, 515, 580, 648, 724, 803, 883, 969, 1060, 1154, 1252, 1353, 1459, 1571, 1684, 1800, 1924, 2051, 2179, 2313, 2452, 2594, 2740, 2889, 3043, 3203, 3364, 3528, 3700, 3875, 4051, 4233, 4420
Offset: 0

Views

Author

Keywords

References

  • W. M. Meier, D. H. Olson, and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996.

Programs

  • Mathematica
    CoefficientList[Series[-(x + 1)^3 (x^4 - x^3 + 3 x^2 - x + 1)/((x - 1)^3 (x^2 + 1) (x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)

Formula

For n > 1, a(n) = 2n^2 - 4n + 4 + p(n), with the 12-periodic sequence p(n) with period {0, 0, 0, -1, -1, 1, 0, -2, 0, 1, -1, -1}.
a(12*m+k) = 288*m^2 + 48*k*m + [ 2, 4, 9, 19, 35, 52, 72, 100, 131, 163, 201, 244 ], 0 <= k < 12. - N. J. A. Sloane
G.f.: -(x+1)^3*(x^4-x^3+3*x^2-x+1) / ((x-1)^3*(x^2+1)*(x^2+x+1)). - Colin Barker, Dec 12 2012

A008264 Coordination sequence for tridymite, lonsdaleite, and wurtzite.

Original entry on oeis.org

1, 4, 12, 25, 44, 67, 96, 130, 170, 214, 264, 319, 380, 445, 516, 592, 674, 760, 852, 949, 1052, 1159, 1272, 1390, 1514, 1642, 1776, 1915, 2060, 2209, 2364, 2524, 2690, 2860, 3036, 3217, 3404, 3595, 3792, 3994, 4202, 4414, 4632, 4855, 5084, 5317, 5556, 5800
Offset: 0

Views

Author

Keywords

References

  • Inorganic Crystal Structure Database: Collection Code 29343
  • Michael O'Keeffe, Topological and geometrical characterization of sites in silicon carbide polytypes, Chemistry of Materials 3 (2) (1991), 332-335. (Eq. (2) gives an empirical formula for a(n). - N. J. A. Sloane, Apr 07 2018)

Crossrefs

Cf. A008524 for 4-D analog, A008253 for diamond.
Cf. A217511 for theta series.

Programs

  • Mathematica
    a[n_] := (m = Quotient[n, 4]; k = Mod[n, 4]; 42*m^2 + 21*k*m + Switch[k, 0, 2, 1, 4, 2, 12, 3, 25]); a[0]=1; Table[a[n], {n, 0, 47}] (* Jean-François Alcover, Oct 11 2012, from the first formula *)
    Join[{1}, Table[1 + (42 n^2 + (1 + (-1)^n) (3 + 2 (-1)^((n - 1) n/2)) + 6)/16, {n, 50}]] (* Bruno Berselli, Jul 24 2013 *)
    LinearRecurrence[{2,-1,0,1,-2,1},{1,4,12,25,44,67,96},20] (* Harvey P. Dale, Dec 27 2016 *)
  • PARI
    a(n)=if(n, 1+(42*n^2+(1+(-1)^n)*(3+2*(-1)^((n-1)*n/2))+6)/16, 1) \\ Charles R Greathouse IV, Feb 10 2017

Formula

a(4*m+k) = 42*m^2 + 21*k*m + [ 2, 4, 12, 25 ], 0 <= k < 4 (N. J. A. Sloane).
a(n) = 1 + (42*n^2 + (1 + (-1)^n)*(3 + 2*(-1)^((n - 1)*n/2)) + 6)/16 for n > 0, a(0) = 1. - Bruno Berselli, Jul 24 2013
G.f.: (1 + 2*x + 5*x^2 + 5*x^3 + 5*x^4 + 2*x^5 + x^6)/((1 - x)^3*(1 + x + x^2 + x^3)). - Bruno Berselli, Jul 24 2013
Previous Showing 51-60 of 580 results. Next