cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 85 results. Next

A063493 a(n) = (2*n-1)*(13*n^2-13*n+6)/6.

Original entry on oeis.org

1, 16, 70, 189, 399, 726, 1196, 1835, 2669, 3724, 5026, 6601, 8475, 10674, 13224, 16151, 19481, 23240, 27454, 32149, 37351, 43086, 49380, 56259, 63749, 71876, 80666, 90145, 100339, 111274, 122976, 135471, 148785, 162944, 177974, 193901, 210751, 228550, 247324, 267099
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(13*n^2-13*n+6)/6: n in [1..40]]; // Vincenzo Librandi, Dec 16 2015
  • Mathematica
    Table[(2 n - 1) (13 n^2 - 13 n + 6)/6, {n, 1, 40}] (* Bruno Berselli, Dec 16 2015 *)
    LinearRecurrence[{4,-6,4,-1}, {1,16,70,189}, 30] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(13*n^2 - 13*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-6+12*x+39*x^2+26*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
    
  • Python
    A063493_list, m = [], [26, -13, 2, 1]
    for _ in range(10**2):
        A063493_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
    

Formula

G.f.: x*(1+x)*(1+11*x+x^2)/(1-x)^4. - Colin Barker, Apr 20 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Dec 16 2015
E.g.f.: (-6 + 12*x + 39*x^2 + 26*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017

A063495 a(n) = (2*n-1)*(5*n^2-5*n+2)/2.

Original entry on oeis.org

1, 18, 80, 217, 459, 836, 1378, 2115, 3077, 4294, 5796, 7613, 9775, 12312, 15254, 18631, 22473, 26810, 31672, 37089, 43091, 49708, 56970, 64907, 73549, 82926, 93068, 104005, 115767, 128384, 141886, 156303, 171665, 188002, 205344, 223721, 243163, 263700, 285362
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(5*n^2-5*n+2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    Table[(2n-1)(5n^2-5n+2)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,18,80,217},40] (* Harvey P. Dale, Dec 18 2011 *)
  • PARI
    a(n) = (2*n - 1)*(5*n^2 - 5*n + 2)/2 \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-2+4*x+15*x^2+10*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
    

Formula

From Harvey P. Dale, Dec 18 2011: (Start)
a(1)=1, a(2)=18, a(3)=80, a(4)=217, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) - a(n-4).
G.f.: (x^3+14*x^2+14*x+1)/(1-x)^4. (End)
E.g.f.: (-2 + 4*x + 15*x^2 + 10*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017

A049480 a(n) = (2*n-1)*(n^2 -n +6)/6.

Original entry on oeis.org

1, 4, 10, 21, 39, 66, 104, 155, 221, 304, 406, 529, 675, 846, 1044, 1271, 1529, 1820, 2146, 2509, 2911, 3354, 3840, 4371, 4949, 5576, 6254, 6985, 7771, 8614, 9516, 10479, 11505, 12596, 13754, 14981, 16279, 17650, 19096, 20619, 22221
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Crossrefs

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(n^2-n+6)/6: n in [1..30]]; // G. C. Greubel, Dec 01 2017
    
  • Mathematica
    Table[(2n-1)(n^2-n+6)/6,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,4,10,21},50] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    a(n)=(2*n-1)*(n^2-n+6)/6 \\ Charles R Greathouse IV, Sep 24 2015
    
  • PARI
    x='x+O('x^30); Vec(serlaplace((-6 + 12*x + 3*x^2 + 2*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017

Formula

From Harvey P. Dale, Jan 01 2012: (Start)
G.f.: x*(x^3 + 1)/(x-1)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4); a(1)=1, a(2)=4, a(3)=10, a(4)=21. (End)
E.g.f.: (-6 + 12*x + 3*x^2 + 2*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017

A142995 a(0) = 0, a(1) = 1, a(n+1) = (2*n^2 + 2*n + 3)*a(n) - n^4*a(n-1), n >= 1.

Original entry on oeis.org

0, 1, 7, 89, 1836, 56164, 2390832, 135213840, 9809203968, 888117094656, 98167241088000, 13010123816064000, 2036436482119680000, 371699564417796096000, 78251077775510986752000
Offset: 0

Views

Author

Peter Bala, Jul 18 2008

Keywords

Comments

This is the case m = 1 of the general recurrence a(0) = 0, a(1) = 1, a(n+1) = (2*n^2 + 2*n + m^2 + m + 1)*a(n) - n^4*a(n-1) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series Sum_{k>=1} 1/k^2 for the constant zeta(2). For other cases see A001819 (m=0), A142996 (m=2), A142997 (m=3) and A142998 (m=4).
The solution to the general recurrence may be expressed as a sum: a(n) = n!^2*p_m(n)*Sum_{k = 1..n} 1/(k^2*p_m(k-1)*p_m(k)), where p_m(x) := Sum_{k = 0..m} C(m,k)^2*C(x+k,m) = Sum_{k = 0..m} C(m,k)*C(m+k,k)*C(x,k) is the Ehrhart polynomial of the polytope formed from the convex hull of a root system of type A_m (equivalently, the polynomial that generates the crystal ball sequence for the A_m lattice [Bacher et al.]).
The first few are p_0(x) = 1, p_1(x) = 2*x + 1, p_2(x) = 3*x^2 + 3*x + 1 and p_3(x) = (10*x^3 + 15*x^2 + 11*x + 3)/3. The o.g.f. for the p_m(x) is ((1-t^2)^x/(1-t)^(2x+1))*Legendre_P(x,(1+t^2)/(1-t^2)) = 1 + (2*x+1)*t + (3*x^2+3*x+1)*t^2 + ... [Gogin & Hirvensalo, Theorem 1 with N = -1].
The polynomial p_m(x) is the unique polynomial solution of the difference equation (x+1)^2*f(x+1) + x^2*f(x-1) = (2*x^2 + 2*x + m^2 + m + 1)*f(x), normalized so that f(0) = 1. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane; that is, the polynomials p_m(x-1), m = 1,2,3,..., satisfy a Riemann hypothesis (adapt the proof of the lemma on p. 4 of [BUMP et al.]).
The general recurrence in the first paragraph above has a second solution b(n) = n!^2*p_m(n) with initial conditions b(0) = 1, b(1) = m^2 + m + 1. Hence the behavior of a(n) for large n is given by lim n -> infinity a(n)/b(n) = Sum_{k>=1} 1/(k^2*p_m(k-1)*p_m(k)) = 1/((m^2 + m + 1) - 1^4/((m^2 + m + 5) - 2^4/((m^2 + m + 13) - ... - n^4/((2*n^2 + 2*n + m^2 + m + 1) - ...)))) = 2*Sum_{k>=1} (-1)^(k+1)/(m+k)^2. The final equality follows from a result of Ramanujan; see [Berndt, Chapter 12, Corollary to Entry 31] (replace x by 2x+1 in the corollary and apply Entry 14).
For related results see A142999. For corresponding results for the constants e, log(2) and zeta(3) see A000522, A142979 and A143003 respectively.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Cf. A000522, A001819, A003215 (A_2 lattice), A005902 (A_3 lattice), A008384 (A_4 lattice), A008386 (A_5 lattice), A108625, A142979, A142996, A142997, A142998, A143003.

Programs

  • Maple
    p := n -> 2*n+1: a := n -> n!^2*p(n)*sum (1/(k^2*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 0..20);
  • Mathematica
    a[n_] := -1/6*n!^2*(2*n*(Pi^2-12) + Pi^2 - 6*(2*n+1)*PolyGamma[1, n+1]) // Simplify; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 06 2013 *)

Formula

a(n) = n!^2*p(n)*Sum_{k = 1..n} 1/(k^2*p(k-1)*p(k)), where p(n) = 2*n+1. Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n^2 + 2*n + 3)*a(n) - n^4*a(n-1). The sequence b(n):= n!^2*p(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 3. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(3 - 1^4/(7 - 2^4/(15 - 3^4/(27 - ... - (n-1)^4/(2*n^2 - 2*n + 3))))), for n >= 2. Lim_{n -> infinity} a(n)/b(n) = 1/(3 - 1^4/(7 - 2^4/(15 - 3^4/(27 - ... - n^4/((2*n^2 + 2*n + 3) - ...))))) = Sum_{k>=1} 1/(k^2*(4*k^2 - 1)) = 2 - zeta(2).

A108553 Square array, read by antidiagonals, where row n equals the crystal ball sequence for D_n lattice.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 13, 13, 7, 1, 1, 25, 55, 25, 9, 1, 1, 41, 169, 147, 41, 11, 1, 1, 61, 411, 625, 309, 61, 13, 1, 1, 85, 853, 2051, 1681, 561, 85, 15, 1, 1, 113, 1583, 5577, 6981, 3721, 923, 113, 17, 1, 1, 145, 2705, 13203, 23673, 18733, 7225, 1415, 145, 19, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2005

Keywords

Comments

Rows 0 and 2 are included by extension since they fit the formula. Row 1 equals the odd numbers in order that triangle A108556 maintains that A108556(n,n-1) = (n/2)*A108556(n,n) for all n>=1, where row n of triangle A108556 equals the inverse binomial transform of row n of this square array.

Examples

			Square array begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,3,5,7,9,11,13,15,17,19,21,23,25,27,...
1,5,13,25,41,61,85,113,145,181,221,265,...
1,13,55,147,309,561,923,1415,2057,2869,...
1,25,169,625,1681,3721,7225,12769,21025,...
1,41,411,2051,6981,18733,42783,86983,...
1,61,853,5577,23673,76389,204205,476113,...
1,85,1583,13203,68853,264825,824083,...
Inverse binomial transform of rows gives
rows of triangle A108556:
1,
1,2,
1,4,4,
1,12,30,20,
1,24,120,192,96,
1,40,330,940,1080,432, ...
Product of the g.f. of row n and (1-x)^(n+1)
generates the symmetric triangle A108558:
1;
1,1;
1,2,1;
1,9,9,1;
1,20,54,20,1;
1,35,180,180,35,1; ...
The row sums of triangle A108558 equals the
main diagonal of triangle A108556.
		

Crossrefs

Cf. A108554 (diagonal), A108555 (antidiagonal sums), A108556, A108558, A001844 (row 2), A005902 (row 3), A007204 (row 4), A008356 (row 5), A008358 (row 6), A008360 (row 7), A008362 (row 8), A008377 (row 9), A008379 (row 10).

Programs

  • PARI
    T(n,k)=if(n<0 || k<0,0,if(n==0 || k==0,1,if(n==1,2*k+1, sum(j=0,k,binomial(n+k-j,k-j)*(binomial(2*n,2*j)-2*n*binomial(n-2,j-1))))))

Formula

T(n, k) = Sum_{j=0..n} C(n+k-j, k-j)*[C(2*n, 2*j) - 2*j*(n-j)*C(n, j)/(n-1)] for n>1, with T(0, k)=1, T(1, k)=2*k+1.

A132366 Partial sum of centered tetrahedral numbers A005894.

Original entry on oeis.org

1, 6, 21, 56, 125, 246, 441, 736, 1161, 1750, 2541, 3576, 4901, 6566, 8625, 11136, 14161, 17766, 22021, 27000, 32781, 39446, 47081, 55776, 65625, 76726, 89181, 103096, 118581, 135750, 154721, 175616, 198561, 223686, 251125, 281016, 313501, 348726, 386841
Offset: 0

Views

Author

Jonathan Vos Post, Nov 09 2007

Keywords

Comments

From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) is the number of achiral colorings of the 5 tetrahedral facets (or vertices) of a regular 4-dimensional simplex using n or fewer colors. An achiral arrangement is identical to its reflection. The 4-dimensional simplex is also called a 5-cell or pentachoron. Its Schläfli symbol is {3,3,3}.
There are 60 elements in the automorphism group of the 4-dimensional simplex that are not in its rotation group. Each is an odd permutation of the vertices and can be associated with a partition of 5 based on the conjugacy class of the permutation. The first formula for a(n-1) is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Odd Cycle Indices
41 30 x_1x_4^1
32 20 x_2^1x_3^1
2111 10 x_1^3x_2^1 (End)

Crossrefs

Cf. A337895 (oriented), A000389(n+4) (unoriented), A000389 (chiral), A331353 (5-cell edges, faces), A337955 (8-cell vertices, 16-cell facets), A337958 (16-cell vertices, 8-cell facets), A338951 (24-cell), A338967 (120-cell, 600-cell).
a(n-1) = A325001(4,n).

Programs

  • Mathematica
    Do[Print[n, " ", (n^4 + 4 n^3 + 11 n^2 + 14 n + 6)/6 ], {n, 0, 10000}]
    Accumulate[Table[(2n+1)(n^2+n+3)/3,{n,0,40}]] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,6,21,56,125},40] (* Harvey P. Dale, Feb 26 2020 *)

Formula

a(n) = (n^4 + 4*n^3 + 11*n^2 + 14*n + 6)/6 = (n^2+2*n+6)*(n+1)^2/6.
G.f.: -(x+1)*(x^2+1) / (x-1)^5. - Colin Barker, May 04 2013
From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) = n^2 * (5 + n^2) / 6.
a(n-1) = binomial(n+4,5) - binomial(n,5) = A000389(n+4) - A000389(n).
a(n-1) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n-1) = 2*A000389(n+4) - A337895(n) = A337895(n) - 2*A000389(n) .
G.f. for a(n-1): x * (x+1) * (x^2+1) / (1-x)^5. (End)
From Amiram Eldar, Feb 14 2023: (Start)
Sum_{n>=0} 1/a(n) = Pi^2/5 + 3/25 - 3*Pi*coth(sqrt(5)*Pi)/(5*sqrt(5)).
Sum_{n>=0} (-1)^n/a(n) = Pi^2/10 - 3/25 + 3*Pi*cosech(sqrt(5)*Pi)/(5*sqrt(5)). (End)
a(n) = A006007(n) + A006007(n+1) = A002415(n) + A002415(n+2). - R. J. Mathar, Jun 05 2025

Extensions

Corrected offset, Mathematica program by Tomas J. Bulka (tbulka(AT)rodincoil.com), Sep 02 2009

A099721 a(n) = n^2*(2*n+1).

Original entry on oeis.org

0, 3, 20, 63, 144, 275, 468, 735, 1088, 1539, 2100, 2783, 3600, 4563, 5684, 6975, 8448, 10115, 11988, 14079, 16400, 18963, 21780, 24863, 28224, 31875, 35828, 40095, 44688, 49619, 54900, 60543, 66560, 72963, 79764, 86975, 94608, 102675, 111188, 120159, 129600
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Nov 07 2004

Keywords

Comments

For a right triangle with sides of lengths 8*n^3 + 12*n^2 + 8*n + 2, 4*n^4 + 8*n^3 + 4*n^2, and 4*n^4 + 8*n^3 + 12*n^2 + 8*n + 2, dividing the area by the perimeter gives a(n). - J. M. Bergot, Jul 30 2013
This sequence is the difference between the centered icosahedral (or cuboctahedral) numbers (A005902(n)) and the centered octagonal pyramidal numbers (A000447(n+1)). - Peter M. Chema, Jan 09 2016
a(n) is the sum of the integers in the closed interval (n-1)*n to n*(n+1). - J. M. Bergot, Apr 19 2017

Crossrefs

Programs

Formula

G.f.: x*(3 + 8*x + x^2)/(x-1)^4.
a(n) = A024196(n) - A024196(n-1). - Philippe Deléham, May 07 2012
a(n) = ceiling(Sum_{i=n^2-(n-1)..n^2+(n-1)} s(i)), for n > 0 and integer i, where s(i) are the real solutions to x = i + sqrt(x), and the summation range excludes the integer solutions which occur where i is an oblong number (A002378). The fractional portion of the summation converges to 2/3 for large n. If s(i) is replaced with i, then the summation equals n^2*(2*n-1) = A015237. - Richard R. Forberg, Oct 15 2014
a(n) = A005902(n) - A000447(n+1). - Peter M. Chema, Jan 09 2016
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/6 + 4*log(2) - 4.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 - Pi - 2*log(2) + 4. (End)
From Elmo R. Oliveira, Aug 08 2025: (Start)
E.g.f.: x*(1 + 2*x)*(3 + x)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A000290(n)*A005408(n). (End)

A108558 Symmetric triangle, read by rows, where row n equals the (n+1)-th differences of the crystal ball sequence for D_n lattice, for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 20, 54, 20, 1, 1, 35, 180, 180, 35, 1, 1, 54, 447, 852, 447, 54, 1, 1, 77, 931, 2863, 2863, 931, 77, 1, 1, 104, 1724, 7768, 12550, 7768, 1724, 104, 1, 1, 135, 2934, 18186, 43128, 43128, 18186, 2934, 135, 1, 1, 170, 4685, 38200, 124850, 183356, 124850, 38200, 4685, 170, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2005

Keywords

Comments

Row n equals the (n+1)-th differences of row n of the square array A108553. G.f. of row n equals: (1-x)^(n+1)*CBD_n(x), where CBD_n denotes the g.f. of the crystal ball sequence for D_n lattice.
From Peter Bala, Oct 23 2008: (Start)
Let D_n be the root lattice generated as a monoid by {+-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(D_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(D_n) [Ardila et al.]. See A108556 for the corresponding array of f-vectors for these type D_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A086645 for the array of h-vectors associated with type C_n polytopes.
The Hilbert transform of this array (as defined in A145905) equals A108553.
(End)

Examples

			G.f.s of initial rows of square array A108553 are:
  (1)/(1-x),
  (1 + x)/(1-x)^2,
  (1 + 2*x + x^2)/(1-x)^3,
  (1 + 9*x + 9*x^2 + x^3)/(1-x)^4,
  (1 + 20*x + 54*x^2 + 20*x^3 + x^4)/(1-x)^5,
  (1 + 35*x + 180*x^2 + 180*x^3 + 35*x^4 + x^5)/(1-x)^6.
Triangle begins:
  1;
  1,   1;
  1,   2,    1;
  1,   9,    9,     1;
  1,  20,   54,    20,      1;
  1,  35,  180,   180,     35,      1;
  1,  54,  447,   852,    447,     54,      1;
  1,  77,  931,  2863,   2863,    931,     77,     1;
  1, 104, 1724,  7768,  12550,   7768,   1724,   104,    1;
  1, 135, 2934, 18186,  43128,  43128,  18186,  2934,  135,   1;
  1, 170, 4685, 38200, 124850, 183356, 124850, 38200, 4685, 170, 1;
  ...
		

Crossrefs

Cf. A108553, A008353, A108558, A008459, A086645, A108556. Row n equals (n+1)-th differences of: A001844 (row 2), A005902 (row 3), A007204 (row 4), A008356 (row 5), A008358 (row 6), A008360 (row 7), A008362 (row 8), A008377 (row 9), A008379 (row 10).
T(2n,n) gives A305693.

Programs

  • Mathematica
    T[1, 0] = T[1, 1]=1; T[n_, k_] := Binomial[2n, 2k] - 2n Binomial[n-2, k-1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)
  • PARI
    T(n,k)=if(n
    				

Formula

T(n, k) = C(2*n, 2*k) - 2*n*C(n-2, k-1) for n>1, with T(0, 0)=1, T(1, 0)=T(1, 1)=1. Row sums equal A008353: 2^(n-1)*(2^n-n) for n>1.
From Peter Bala, Oct 23 2008: (Start)
O.g.f. : rational function N(x,z)/D(x,z), where N(x,z) = 1 - 3*(1 + x)*z + (3 + 2*x + 3*x^2)*z^2 - (1 + x)*(1 - 8*x + x^2)z^3 - 8*x*(1 + x^2)*z^4 + 2*x*(1 + x)*(1 - x)^2*z^5 and D(x,z) = ((1 - z)^2 - 2*x*z*(1 + z) + x^2*z^2)*(1 - z*(1 + x))^2.
For n >= 2, the row n generating polynomial equals 1/2*[(1 + sqrt(x))^(2n) + (1 - sqrt(x))^(2n)] - 2*n*x*(1 + x)^(n-2).
(End)

A096000 Cupolar numbers: a(n) = (n+1)*(5*n^2 + 7*n + 3)/3.

Original entry on oeis.org

1, 10, 37, 92, 185, 326, 525, 792, 1137, 1570, 2101, 2740, 3497, 4382, 5405, 6576, 7905, 9402, 11077, 12940, 15001, 17270, 19757, 22472, 25425, 28626, 32085, 35812, 39817, 44110, 48701, 53600, 58817, 64362, 70245, 76476, 83065, 90022, 97357, 105080, 113201, 121730
Offset: 0

Views

Author

N. J. A. Sloane, in memory of Harold Scott MacDonald Coxeter [Feb 09 1907 - Mar 31 2003], May 08 2004

Keywords

Comments

Number of equal balls that will fill a triangular cupola, formed by splitting a cuboctahedron along one of its four "equilateral" hexagons.
Also as a(n) = (1/6)*(10*n^3 - 6*n^2 + 10*n), n>0: structured pentagonal anti-prism numbers (Cf. A100185 = structured anti-prisms); and structured tetragonal anti-diamond numbers (vertex structure 7) (Cf. A000447 = alternate vertex; A100188 = structured anti-diamonds). Cf. A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004

References

  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.

Crossrefs

Programs

Formula

a(n) = (1/2)*(Q(n) + 3*n^2 + 3*n + 1), where Q(n) are the cuboctahedral numbers, A005902.
G.f.: (1+6*x+3*x^2)/(1-x)^4. - Paul Barry, Oct 28 2006
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3. - Wesley Ivan Hurt, May 23 2015
E.g.f.: exp(x)*(3 + 27*x + 27*x^2 + 5*x^3)/3. - Elmo R. Oliveira, Aug 11 2025

A108556 Triangle, read by rows, where row n equals the inverse binomial transform of the crystal ball sequence for D_n lattice.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 12, 30, 20, 1, 24, 120, 192, 96, 1, 40, 330, 940, 1080, 432, 1, 60, 732, 3200, 6240, 5568, 1856, 1, 84, 1414, 8708, 25200, 37184, 27104, 7744, 1, 112, 2480, 20352, 80960, 173824, 206080, 126976, 31744, 1, 144, 4050, 42588, 221544, 643824, 1096032, 1085760, 579456, 128768
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2005

Keywords

Comments

Row n equals the inverse binomial transform of row n of the square array A108553.
Array of f-vectors for type D root polytopes [Ardila et al.]. See A063007 and A127674 for the arrays of f-vectors for type A and type C root polytopes respectively. - Peter Bala, Oct 23 2008

Examples

			Triangle begins:
1;
1,2;
1,4,4;
1,12,30,20;
1,24,120,192,96;
1,40,330,940,1080,432;
1,60,732,3200,6240,5568,1856;
1,84,1414,8708,25200,37184,27104,7744;
1,112,2480,20352,80960,173824,206080,126976,31744; ...
		

Crossrefs

Cf. A108553, A108557 (row sums), A108558, Rows are inverse binomial transforms of: A001844 (row 2), A005902 (row 3), A007204 (row 4), A008356 (row 5), A008358 (row 6), A008360 (row 7), A008362 (row 8), A008377 (row 9), A008379 (row 10).

Programs

  • Mathematica
    T[n_, k_] := Module[{A}, A = Table[Table[If[r - 1 == 0 || c - 1 == 0, 1, If[r - 1 == 1, 2c - 1, Sum[Binomial[r + c - j - 2, c - j - 1] (Binomial[2r - 2, 2j] - 2(r - 1) Binomial[r - 3, j - 1]), {j, 0, c - 1}]]], {c, 1, n + 1}], {r, 1, n + 1}]; SeriesCoefficient[((A[[n + 1]]. x^Range[0, n]) /. x -> x/(1 + x))/(1 + x), {x, 0, k}]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2018, from PARI *)
  • PARI
    T(n,k)=local(A=vector(n+1,r,vector(n+1,c,if(r-1==0 || c-1==0,1,if(r-1==1,2*c-1, sum(j=0,c-1,binomial(r+c-j-2,c-j-1)*(binomial(2*r-2,2*j)-2*(r-1)*binomial(r-3,j-1)))))))); polcoeff(subst(Ser(A[n+1]),x,x/(1+x))/(1+x),k)

Formula

Main diagonal equals A008353: 2^(n-1)*(2^n-n) for n>1.
O.g.f. : rational function N(x,z)/D(x,z), where N(x,z) = 1 - 3*(1 + 2*x)*z + (3 + 8*x + 8*x^2)*z^2 - (1 + 2*x)*(1 - 6*x - 6*x^2)z^3 - 8*x*(1 + x)(1 + 2*x + 2*x^2)*z^4 + 2*x*(1 + x)*(1 + 2*x)*z^5 and D(x,z) = ((1-z)^2 - 4*x*z)*(1 - z*(1 + 2*x))^2. - Peter Bala, Oct 23 2008
Previous Showing 61-70 of 85 results. Next