cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A117066 Partial sums of cupolar numbers (1/3)*(n+1)*(5*n^2+7*n+3) (A096000).

Original entry on oeis.org

1, 11, 48, 140, 325, 651, 1176, 1968, 3105, 4675, 6776, 9516, 13013, 17395, 22800, 29376, 37281, 46683, 57760, 70700, 85701, 102971, 122728, 145200, 170625, 199251, 231336, 267148, 306965, 351075, 399776, 453376, 512193, 576555, 646800, 723276, 806341
Offset: 1

Views

Author

Jonathan Vos Post, Apr 17 2006

Keywords

Comments

Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of rectangular prisms with dimensions p, p and q. - Wesley Ivan Hurt, Apr 15 2018

Examples

			For n=6, 9*a(6) = 6^3 + 7^3 + 8^3 + 9^3 + 10^3 + 11^3 +12^3 = 9*651. - _Bruno Berselli_, Apr 01 2014
		

Crossrefs

Programs

  • GAP
    List([1..40], n-> n^2*(n+1)*(5*n+1)/12); # G. C. Greubel, Jul 05 2019
  • Magma
    [n^2*(n+1)*(5*n+1)/12: n in [1..40]]; // Vincenzo Librandi, Apr 16 2018
    
  • Maple
    a:=n->sum ((n+j)^3, j=0..n): seq(a(n)/9, n=1..40);# Zerinvary Lajos, Dec 17 2008
  • Mathematica
    Table[Sum[n i (n + i), {i, 0, n}]/2, {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Jun 03 2011 *)
    Accumulate[Table[((n+1)(5n^2+7n+3))/3,{n,0,50}]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,11,48,140,325},50] (* Harvey P. Dale, Jan 03 2024 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(3*x^2+6*x+1)/(1-x)^5) \\ G. C. Greubel, Jul 19 2017
    
  • PARI
    a(n) = n^2*(n+1)*(5*n+1)/12; \\ Altug Alkan, Apr 16 2018
    
  • Sage
    [n^2*(n+1)*(5*n+1)/12 for n in (1..40)] # G. C. Greubel, Jul 05 2019
    

Formula

a(n) = Sum_{i=1..n} A096000(i).
a(n) = Sum_{i=1..n} (1/3)*(i+1)*(5*i^2+7*i+3).
a(n) = Sum_{i=1..n} (1/2)*(Q(i) + 3*i^2 + 3*i + 1), where Q(i) are the cuboctahedral numbers (A005902).
a(n) = Sum_{i=0..n} A073254(n,i)*i. - Peter Luschny, Oct 29 2011
G.f.: x*(1+6*x+3*x^2) / (1-x)^5. - Colin Barker, May 08 2013
9*a(n) = Sum_{i=0..n} (n+i)^3, see Maple code by Zerinvary Lajos. - Bruno Berselli, Apr 01 2014
a(n) = n^2*(n+1)*(5*n+1)/12. - Vaclav Kotesovec, Jan 03 2017
E.g.f.: (x/12)*(12 + 54*x + 36*x^2 + 5*x^3)*exp(x). - G. C. Greubel, Jul 19 2017
Another identity: ..., a(4) = (1/2)*(7*(2+4+6+8)+5*(4+6+8)+3*(6+8)+1*(8)) = 140, a(5) = (1/2)*(9*(2+4+6+8+10)+7*(4+6+8+10)+5*(6+8+10)+3*(8+10)+1*(10)) = 325, ... - J. M. Bergot, Aug 25 2022

Extensions

Terms corrected by Colin Barker, May 08 2013

A000447 a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.

Original entry on oeis.org

0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0

Views

Author

Keywords

Comments

4 times the variance of the area under an n-step random walk: e.g., with three steps, the area can be 9/2, 7/2, 3/2, 1/2, -1/2, -3/2, -7/2, or -9/2 each with probability 1/8, giving a variance of 35/4 or a(3)/4. - Henry Bottomley, Jul 14 2003
Number of standard tableaux of shape (2n-1,1,1,1) (n>=1). - Emeric Deutsch, May 30 2004
Also a(n) = (1/6)*(8*n^3-2*n), n>0: structured octagonal diamond numbers (vertex structure 9). Cf. A059722 = alternate vertex; A000447 = structured diamonds; and structured tetragonal anti-diamond numbers (vertex structure 9). Cf. A096000 = alternate vertex; A100188 = structured anti-diamonds. Cf. A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The n-th tetrahedral (or pyramidal) number is n(n+1)(n+2)/6. This sequence contains the tetrahedral numbers of A000292 obtained for n= 1,3,5,7,... (see A015219). - Valentin Bakoev, Mar 03 2009
Using three consecutive numbers u, v, w, (u+v+w)^3-(u^3+v^3+w^3) equals 18 times the numbers in this sequence. - J. M. Bergot, Aug 24 2011
This sequence is related to A070893 by A070893(2*n-1) = n*a(n)-sum(i=0..n-1, a(i)). - Bruno Berselli, Aug 26 2011
Number of integer solutions to 1-n <= x <= y <= z <= n-1. - Michael Somos, Dec 27 2011
Partial sums of A016754. - Reinhard Zumkeller, Apr 02 2012
Also the number of cubes in the n-th Haüy square pyramid. - Eric W. Weisstein, Sep 27 2017

Examples

			G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
		

References

  • G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
  • F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
  • C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Column 1 in triangles A008956 and A008958.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of A002577. - Valentin Bakoev, Mar 03 2009

Programs

Formula

a(n) = binomial(2*n+1, 3) = A000292(2*n-1).
G.f.: x*(1+6*x+x^2)/(1-x)^4.
a(n) = -a(-n) for all n in Z.
a(n) = A000330(2*n)-4*A000330(n) = A000466(n)*n/3 = A000578(n)+A007290(n-2) = A000583(n)-2*A024196(n-1) = A035328(n)/3. - Henry Bottomley, Jul 14 2003
a(n+1) = (2*n+1)*(2*n+2)(2*n+3)/6. - Valentin Bakoev, Mar 03 2009
a(0)=0, a(1)=1, a(2)=10, a(3)=35, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, May 25 2012
a(n) = v(n,n-1), where v(n,k) is the central factorial numbers of the first kind with odd indices. - Mircea Merca, Jan 25 2014
a(n) = A005917(n+1) - A100157(n+1), where A005917 are the rhombic dodecahedral numbers and A100157 are the structured rhombic dodecahedral numbers (vertex structure 9). - Peter M. Chema, Jan 09 2016
For any nonnegative integers m and n, 8*(n^3)*a(m) + 2*m*a(n) = a(2*m*n). - Ivan N. Ianakiev, Mar 04 2017
E.g.f.: exp(x)*x*(1 + 4*x + (4/3)*x^2). - Wolfdieter Lang, Mar 11 2017
a(n) = A002412(n) + A016061(n-1), for n>0. - Bruce J. Nicholson, Nov 12 2017
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*log(2) - 3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3 - 3*log(2). (End)

Extensions

Chrystal and Durell references from R. K. Guy, Apr 02 2004

A006331 a(n) = n*(n+1)*(2*n+1)/3.

Original entry on oeis.org

0, 2, 10, 28, 60, 110, 182, 280, 408, 570, 770, 1012, 1300, 1638, 2030, 2480, 2992, 3570, 4218, 4940, 5740, 6622, 7590, 8648, 9800, 11050, 12402, 13860, 15428, 17110, 18910, 20832, 22880, 25058, 27370, 29820, 32412, 35150, 38038, 41080, 44280
Offset: 0

Views

Author

Keywords

Comments

Triangles in rhombic matchstick arrangement of side n.
Maximum accumulated number of electrons at energy level n. - Scott A. Brown, Feb 28 2000
Let M_n denote the n X n matrix M_n(i,j)=i^2+j^2; then the characteristic polynomial of M_n is x^n - a(n)x^(n-1) - .... - Michael Somos, Nov 14 2002
Convolution of odds (A005408) and evens (A005843). - Graeme McRae, Jun 06 2006
a(n) is the number of non-monotonic functions with domain {0,1,2} and codomain {0,1,...,n}. - Dennis P. Walsh, Apr 25 2011
For any odd number 2n+1, find Sum_{aJ. M. Bergot, Jul 16 2011
a(n) gives the number of (n+1) X (n+1) symmetric (0,1)-matrices containing three ones (see [Cameron]). - L. Edson Jeffery, Feb 18 2012
a(n) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and |w - x| < y. - Clark Kimberling, Jun 02 2012
Partial sums of A001105. - Omar E. Pol, Jan 12 2013
Total number of square diagonals (of any size) in an n X n square grid. - Wesley Ivan Hurt, Mar 24 2015
Number of diagonal attacks of two queens on (n+1) X (n+1) chessboard. - Antal Pinter, Sep 20 2015
a(n) is the minimum value obtainable by partitioning either the set {x in the natural numbers | 1 <= x <= 2n} or the set {x in the natural numbers | 0 <= x <= 2n+1} into pairs, taking the product of all such pairs, and taking the sum of all such products. - Thomas Anton, Oct 21 2020
a(n) is the irregularity of the n-th power of a path of length at least 3*n. (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, Jun 16 2023
a(n) is the maximum possible total number of inversions in all rows and all columns of a Latin square of order n+1. - Ivaylo Kortezov, Jun 28 2025

Examples

			For n=2, a(2)=10 since there are 10 non-monotonic functions f from {0,1,2} to {0,1,2}, namely, functions f = <f(1),f(2),f(3)> given by <0,1,0>, <0,2,0>, <0,2,1>, <1,0,1>, <1,0,2>, <1,2,0>, <1,2,1>, <2,0,1>, <2,0,2>, and <2,1,2>. - _Dennis P. Walsh_, Apr 25 2011
Let n=4, 2*n+1 = 9. Since 9 = 1+8 = 3+6 = 5+4 = 7+2, a(4) = 1*8 + 3*6 + 5*4 + 7*2 = 60. - _Vladimir Shevelev_, May 11 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of A132339.
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).

Programs

  • Haskell
    a006331 n = sum $ zipWith (*) [2*n-1, 2*n-3 .. 1] [2, 4 ..]
    -- Reinhard Zumkeller, Feb 11 2012
  • Magma
    [n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
    
  • Maple
    A006331 := proc(n)
        n*(n+1)*(2*n+1)/3 ;
    end proc:
    seq(A006331(n),n=0..80) ; # R. J. Mathar, Sep 27 2013
  • Mathematica
    Table[n(n+1)(2n+1)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,10,28},50] (* Harvey P. Dale, Apr 12 2013 *)
  • PARI
    a(n)=if(n<0,0,n*(n+1)*(2*n+1)/3)
    

Formula

G.f.: 2*x*(1 + x)/(1 - x)^4. - Simon Plouffe (in his 1992 dissertation)
a(n) = 2*binomial(n+1,3) + 2*binomial(n+2,3).
a(n) = 2*A000330(n) = A002492(n)/2.
a(n) = Sum_{i=0..n} T(i,n-i), array T as in A048147. - N. J. A. Sloane, Dec 11 1999
From the formula for the sum of squares of positive integers 1^2 + 2^2 + 3^2 + ... + n^2 = n*(n+1)(2*n+1)/6, if we multiply both sides by 2 we get Sum_{k=0..n} 2*k^2 = n*(n+1)*(2*n+1)/3, which is an alternative formula for this sequence. - Mike Warburton, Sep 08 2007
10*a(n) = A016755(n) - A001845(n); since A016755 are odd cubes and A001845 centered octahedral numbers, 10*a(n) are the "odd cubes without their octahedral contents." - Damien Pras, Mar 19 2011
a(n) = sum(a*b), where the summing is over all unordered partitions 2*n+1=a+b. - Vladimir Shevelev, May 11 2012
a(n) = binomial(2*n+2, 3)/2. - Ronan Flatley, Dec 13 2012
a(n) = A000292(n) + A002411(n). - Omar E. Pol, Jan 11 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3, with a(0)=0, a(1)=2, a(2)=10, a(3)=28. - Harvey P. Dale, Apr 12 2013
a(n) = A208532(n+1,2). - Philippe Deléham, Dec 05 2013
Sum_{n>0} 1/a(n) = 9 - 12*log(2). - Enrique Pérez Herrero, Dec 03 2014
a(n) = A000292(n-1) + (n+1)*A000217(n). - J. M. Bergot, Sep 02 2015
a(n) = 2*(A000332(n+3) - A000332(n+1)). - Antal Pinter, Sep 20 2015
From Bruno Berselli, May 17 2018: (Start)
a(n) = n*A002378(n) - Sum_{k=0..n-1} A002378(k) for n>0, a(0)=0. Also:
A163102(n) = n*a(n) - Sum_{k=0..n-1} a(k) for n>0, A163102(0)=0. (End)
a(n) = A005900(n) - A000290(n) = A096000(n) - A000578(n+1) = A000578(n+1) - A084980(n+1) = A000578(n+1) - A077415(n)-1 = A112524(n) + 1 = A188475(n) - 1 = A061317(n) - A100178(n) = A035597(n+1) - A006331(n+1). - Bruce J. Nicholson, Jun 24 2018
E.g.f.: (1/3)*exp(x)*x*(6 + 9*x + 2*x^2). - Stefano Spezia, Jan 05 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi - 9. - Amiram Eldar, Jan 04 2022

A100185 Structured meta-anti-prism numbers, the n-th number from a structured n-gonal anti-prism number sequence.

Original entry on oeis.org

1, 4, 19, 68, 185, 416, 819, 1464, 2433, 3820, 5731, 8284, 11609, 15848, 21155, 27696, 35649, 45204, 56563, 69940, 85561, 103664, 124499, 148328, 175425, 206076, 240579, 279244, 322393, 370360, 423491, 482144
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com)

Keywords

Examples

			There are no 1- or 2-gonal anti-prisms, so 1 and (2n) are used as the first and second terms since all the sequences begin as such.
		

Crossrefs

Cf. A005900, A000447, A096000, A100178, A100157, A100185 - structured anti-prisms; A006484 for other structured meta numbers; and A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(3*n^4-8*n^3+9*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Aug 03 2011

Formula

a(n) = (1/6)*(3*n^4 - 8*n^3 + 9*n^2 + 2*n).
G.f.: x*(1 - x + 9*x^2 + 3*x^3)/(1-x)^5. [Colin Barker, Jun 08 2012]

A100189 Equatorial structured meta-anti-diamond numbers, the n-th number from an equatorial structured n-gonal anti-diamond number sequence.

Original entry on oeis.org

1, 6, 27, 92, 245, 546, 1071, 1912, 3177, 4990, 7491, 10836, 15197, 20762, 27735, 36336, 46801, 59382, 74347, 91980, 112581, 136466, 163967, 195432, 231225, 271726, 317331, 368452, 425517, 488970, 559271, 636896
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Examples

			There are no 1- or 2-gonal anti-diamonds, so 1 and (2n+2) are used as the first and second terms since all the sequences begin as such.
		

Crossrefs

Cf. A000578, A096000, A051673, A005915, A100186, A100187 - "equatorial" structured anti-diamonds; A100188 - "polar" structured meta-anti-diamond numbers; A006484 for other structured meta numbers; and A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(4*n^4-12*n^3+20*n^2-6*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
  • Mathematica
    Table[(4n^4-12n^3+20n^2-6n)/6,{n,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,6,27,92,245},40] (* Harvey P. Dale, Jul 05 2011 *)

Formula

a(n) = (1/6)*(4*n^4-12*n^3+20*n^2-6*n).
a(1)=1, a(2)=6, a(3)=27, a(4)=92, a(5)=245, a(n)=5*a(n-1)-10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Jul 05 2011
G.f.: x*(1+x)*(1+7*x^2)/(1-x)^5. - Colin Barker, Jan 19 2012

A381425 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of (1 + x/(1-x)^k)^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 1, 0, 1, 4, 12, 10, 1, 0, 1, 5, 22, 37, 18, 1, 0, 1, 6, 35, 92, 102, 30, 1, 0, 1, 7, 51, 185, 345, 258, 47, 1, 0, 1, 8, 70, 326, 880, 1188, 606, 70, 1, 0, 1, 9, 92, 525, 1881, 3851, 3796, 1335, 100, 1, 0, 1, 10, 117, 792, 3563, 10002, 15655, 11364, 2781, 138, 1, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2025

Keywords

Examples

			Square array begins:
  1, 1,  1,   1,    1,     1,     1, ...
  0, 1,  2,   3,    4,     5,     6, ...
  0, 1,  5,  12,   22,    35,    51, ...
  0, 1, 10,  37,   92,   185,   326, ...
  0, 1, 18, 102,  345,   880,  1881, ...
  0, 1, 30, 258, 1188,  3851, 10002, ...
  0, 1, 47, 606, 3796, 15655, 49468, ...
		

Crossrefs

Columns k=0..2 give A000007, A000012, A177787.
Rows n=0..3 give A000012, A001477, A000326, A096000(k-1).
Main diagonal gives A382859.

Programs

  • PARI
    a(n, k) = sum(j=0, k, binomial(k, j)*binomial(n+(k-1)*j-1, n-j));

Formula

A(n,k) = Sum_{j=0..k} binomial(k,j) * binomial(n+(k-1)*j-1,n-j).

A124376 Number triangle with column k generated by x^k*(1+2*k*x+C(k,2)*x^2)/(1-x)^(k+1).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 19, 10, 1, 1, 13, 37, 37, 13, 1, 1, 16, 61, 92, 61, 16, 1, 1, 19, 91, 185, 185, 91, 19, 1, 1, 22, 127, 326, 440, 326, 127, 22, 1, 1, 25, 169, 525, 896, 896, 525, 169, 25, 1, 1, 28, 217, 792, 1638, 2072, 1638, 792, 217, 28, 1
Offset: 0

Views

Author

Paul Barry, Oct 28 2006

Keywords

Examples

			Triangle begins
  1,
  1,  1,
  1,  4,  1,
  1,  7,  7,   1,
  1, 10, 19,  10,   1,
  1, 13, 37,  37,  13,  1,
  1, 16, 61,  92,  61, 16,  1,
  1, 19, 91, 185, 185, 91, 19, 1
		

Crossrefs

Columns include A016777, A003215, A096000.
Cf. A158920.

Programs

  • Mathematica
    A124376[n_, k_] := Sum[Binomial[k, k-j]*Binomial[n-j, k]*Binomial[2, j], {j, 0, n}];
    Table[A124376[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 21 2025 *)
  • PARI
    C(i,j) =binomial(i,j);
    T(n,k) = if (k<=n, sum(j=0, n, C(k,k-j)*C(n-j,k)*C(2,j)));
    row(n) = vector(n+1, k, T(n,k-1));
    for (n=0, 10, print(row(n))) \\ Michel Marcus, Feb 19 2025

Formula

T(n,k) = Sum_{j=0..n} C(k,k-j)*C(n-j,k)*C(2,j)*[k<=n].
T(n,k) = T(n,n-k).

Extensions

More terms from Michel Marcus, Feb 19 2025
Showing 1-7 of 7 results.