cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A106314 Triangle T(n,k) composed of the squares min(n,k)^2.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 4, 4, 1, 1, 4, 9, 4, 1, 1, 4, 9, 9, 4, 1, 1, 4, 9, 16, 9, 4, 1, 1, 4, 9, 16, 16, 9, 4, 1, 1, 4, 9, 16, 25, 16, 9, 4, 1, 1, 4, 9, 16, 25, 25, 16, 9, 4, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 28 2005

Keywords

Examples

			Replacing each term in A003983 by its square, we get:
{1},
{1, 1},
{1, 4, 1},
{1, 4, 4, 1},
{1, 4, 9, 4, 1},
{1, 4, 9, 9, 4, 1},
{1, 4, 9, 16, 9, 4, 1},
{1, 4, 9, 16, 16, 9, 4, 1},
{1, 4, 9, 16, 25, 16, 9, 4, 1},
{1, 4, 9, 16, 25, 25, 16, 9, 4, 1},
{1, 4, 9, 16, 25, 36, 25, 16, 9, 4, 1}
		

Crossrefs

Cf. A003983, A106314, A005993 (row sums).

Programs

  • Mathematica
    Clear[p, n, i];
    p[x_, n_] = Sum[x^i*If[i ==Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= Floor[n/2], 2*i + 1, -(2*(n - i) + 1)]], {i, 0, n}]/(1 - x);
    Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 1, 11}];
    Flatten[%]

Formula

T(n,k) = A003983(n,k)^2.

Extensions

Additional comments from Roger L. Bagula and Gary W. Adamson, Apr 02 2009

A136564 Array read by rows: T(n,k) is the number of directed multigraphs with loops with n arcs, k vertices, and no vertex of degree 0.

Original entry on oeis.org

1, 1, 1, 5, 4, 1, 1, 9, 21, 16, 4, 1, 1, 18, 71, 108, 71, 22, 4, 1, 1, 27, 194, 491, 557, 326, 101, 22, 4, 1, 1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1, 1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1, 1, 84, 2095, 18823, 72064
Offset: 1

Views

Author

Benoit Jubin, Apr 14 2008

Keywords

Comments

Length of the n^th row: 2n.

Examples

			1, 1;
1, 5, 4, 1;
1, 9, 21, 16, 4, 1;
1, 18, 71, 108, 71, 22, 4, 1;
1, 27, 194, 491, 557, 326, 101, 22, 4, 1;
1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1;
1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1;
		

Crossrefs

Row sums: A052171. Partial row sums: A138107.
Sums of the first m entries of each row: A005993 (m=2), A050927 (m=3), A050929 (m=4).

Formula

T(n,1) = 1 if n > 0.
T(n,2n) = 1 if n > 0.
T(n,2n-1) = 4 if n >= 2.
T(n,2n-k) = A144047(k) for n large enough (conjecturally, n >= 2k is enough).
T(n,2) = (n^3 + 6*n^2 + 11*n - 6)/12 + ((n+2)/4)[n even]. (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012

Extensions

More terms from Benoit Jubin and Vladeta Jovovic, Sep 08 2008

A248011 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing three 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 6, 6, 2, 6, 14, 27, 14, 6, 10, 32, 60, 60, 32, 10, 19, 55, 129, 140, 129, 55, 19, 28, 94, 218, 294, 294, 218, 94, 28, 44, 140, 363, 506, 608, 506, 363, 140, 44, 60, 208, 536, 832, 1038, 1038, 832, 536, 208, 60, 85, 285, 785, 1240, 1695
Offset: 1

Views

Author

Keywords

Examples

			T(n,k) for 1<=n<=9 and 1<=k<=9 is:
   k    1     2     3     4     5     6     7     8     9 ...
n
1       0     0     1     2     6    10    19    28    44
2       0     1     6    14    32    55    94   140   208
3       1     6    27    60   129   218   363   536   785
4       2    14    60   140   294   506   832  1240  1802
5       6    32   129   294   608  1038  1695  2516  3642
6      10    55   218   506  1038  1785  2902  4324  6242
7      19    94   363   832  1695  2902  4703  6992 10075
8      28   140   536  1240  2516  4324  6992 10416 14988
9      44   208   785  1802  3642  6242 10075 14988 21544
		

Crossrefs

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
    (4*k^3*n^3 - 12*k^2*n^2 + 2*k^3 + 6*k^2*n + 6*k*n^2 + 2*n^3 - 12*k^2 + 11*k*n - 12*n^2 + 4*k + 4*n - 3 - (2*k^3 + 6*k^2*n - 12*k^2 + 3*k*n + 4*k - 3)*(-1)^n - (6*k*n^2 + 2*n^3 + 3*k*n - 12*n^2 + 4*n - 3)*(-1)^k + (3*k*n - 3)*(-1)^k*(-1)^n)*(1/96);
    end proc;
    f := seq(seq(b(n, k - n + 1), n = 1 .. k), k = 1 .. 140);

Formula

Empirically,
T(n,k) = (4*k^3*n^3 - 12*k^2*n^2 + 2*k^3 + 6*k^2*n + 6*k*n^2 + 2*n^3 - 12*k^2 + 11*k*n - 12*n^2 + 4*k + 4*n - 3 - (2*k^3 + 6*k^2*n - 12*k^2 + 3*k*n + 4*k - 3)*(-1)^n - (6*k*n^2 + 2*n^3 + 3*k*n - 12*n^2 + 4*n - 3)*(-1)^k + (3*k*n - 3)*(-1)^k*(-1)^n)/96;
T(1,k) = A005993(k-3) = (k-1)*(2*(k-2)*k + 3*(1-(-1)^k))/24;
T(2,k) = A225972(k) = (k-1)*(2*k*(2*k-1) + 3*(1-(-1)^k))/12;
T(2,k) - T(1,k) = A199771(k-1) and A212561(k) = (k-1)*(6*k^2 + 3*(1-(-1)^k))/24.

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 01 2015

A248059 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing four 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 6, 6, 1, 3, 22, 39, 22, 3, 9, 60, 139, 139, 60, 9, 19, 135, 371, 476, 371, 135, 19, 38, 266, 813, 1253, 1253, 813, 266, 38, 66, 476, 1574, 2706, 3254, 2706, 1574, 476, 66, 110, 792, 2770, 5199, 6969, 6969, 5199, 2770, 792, 110, 170, 1245
Offset: 1

Views

Author

Keywords

Examples

			T(n,k) for 1<=n<=9 and 1<=k<=9 is:
   k    1      2      3      4      5      6      7      8       9 ...
n
1       0      0      0      1      3      9     19     38      66
2       0      1      6     22     60    135    266    476     792
3       0      6     39    139    371    813   1574   2770    4554
4       1     22    139    476   1253   2706   5199   9080   14857
5       3     60    371   1253   3254   6969  13294  23102   37637
6       9    135    813   2706   6969  14841  28197  48852   79401
7      19    266   1574   5199  13294  28197  53381  92266  149645
8      38    476   2770   9080  23102  48852  92266 159216  257878
9      66    792   4554  14857  37637  79401 149645 257878  417156
		

Crossrefs

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
    (4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 + 12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 + 40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 + 24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 + 24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k + (- 6*k*n + 9)*(-1)^k*(-1)^n)/384
    end proc;
    seq(seq(b(n, k-n+1), n = 1 .. k), k = 1 .. 140);

Formula

Empirically,
T(n,k) = (4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 + 12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 + 40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 + 24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 + 24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k + (- 6*k*n + 9)*(-1)^k*(-1)^n)/384;
T(1,k) = sum(A005993(i-4),i=1,k)
= sum((i-2)*(2*(i-3)*(i-1) + 3*(1-(-1)^(i-1)))/24, i=1,k);
T(2,k) = A071239(k-1) = (k-1)*k*((k-1)^2+2)/6.

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 06 2015

A050927 Number of directed multigraphs with loops on 3 nodes with n arcs.

Original entry on oeis.org

1, 2, 10, 31, 90, 222, 520, 1090, 2180, 4090, 7356, 12660, 21105, 34020, 53460, 81891, 122826, 180510, 260746, 370370, 518518, 715870, 976170, 1315470, 1753975, 2314936, 3027224, 3923845, 5044920, 6436200, 8152542, 10255896
Offset: 0

Views

Author

Vladeta Jovovic, Dec 30 1999

Keywords

Crossrefs

Column k=3 of A138107.
Cf. A005993.

Programs

  • Mathematica
    < 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015 *)
    CoefficientList[Series[(x^10 + 3 x^8 + 10 x^7 + 16 x^6 + 12 x^5 + 16 x^4 + 10 x^3 + 3 x^2 + 1)/((1 - x^3)^3 (1 - x^2)^4 (1 - x)^2), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 08 2015 *)
  • PARI
    Vec((1 + 3*x^2 + 10*x^3 + 16*x^4 + 12*x^5 + 16*x^6 + 10*x^7 + 3*x^8 + x^10)/((1 - x)^2*(1 - x^2)^4*(1 - x^3)^3) + O(x^40)) \\ Andrew Howroyd, Mar 16 2020

Formula

G.f.: (x^10+3*x^8+10*x^7+16*x^6+12*x^5+16*x^4+10*x^3+3*x^2+1) / ((1-x^3)^3*(1-x^2)^4*(1-x)^2).

A050929 Number of directed multigraphs with loops on 4 nodes with n arcs.

Original entry on oeis.org

1, 2, 11, 47, 198, 713, 2423, 7388, 21003, 55433, 137944, 324659, 729022, 1567139, 3242954, 6479759, 12547894, 23607614, 43267994, 77405064, 135435666, 232137202, 390371944, 644897542, 1047890293, 1676518363, 2643628813
Offset: 0

Views

Author

Vladeta Jovovic, Dec 30 1999

Keywords

Crossrefs

Column k=4 of A138107.
Cf. A005993.

Programs

  • Maple
    gf:= (x^26-x^25 + 4*x^24 + 18*x^23 + 63*x^22 + 151*x^21 + 402*x^20 + 790*x^19 + 1511*x^18 + 2353*x^17 + 3400*x^16 + 4296*x^15 + 5115*x^14 + 5266*x^13 + 5115*x^12 + 4296*x^11 + 3400*x^10 + 2353*x^9 + 1511*x^8 + 790*x^7 + 402*x^6 + 151*x^5 + 63*x^4 + 18*x^3 + 4*x^2-x + 1)/((x^4-1)^4*(x^3-1)^5*(x^2-1)^4*(x-1)^3):
    S:= series(gf,x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Aug 07 2015
  • Mathematica
    nn = 30; n = 4; CoefficientList[Series[CycleIndex[ Join[PairGroup[SymmetricGroup[n], Ordered], Permutations[Range[n*(n - 1) + 1, n*(n - 1) + n]], 2], s] /. Table[s[i] -> 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015*)

Formula

G.f.: (x^26-x^25 + 4*x^24 + 18*x^23 + 63*x^22 + 151*x^21 + 402*x^20 + 790*x^19 + 1511*x^18 + 2353*x^17 + 3400*x^16 + 4296*x^15 + 5115*x^14 + 5266*x^13 + 5115*x^12 + 4296*x^11 + 3400*x^10 + 2353*x^9 + 1511*x^8 + 790*x^7 + 402*x^6 + 151*x^5 + 63*x^4 + 18*x^3 + 4*x^2-x + 1)/((x^4-1)^4*(x^3-1)^5*(x^2-1)^4*(x-1)^3).

A092353 Expansion of (1+x^3)/((1-x)^2*(1-x^3)^2).

Original entry on oeis.org

1, 2, 3, 7, 11, 15, 24, 33, 42, 58, 74, 90, 115, 140, 165, 201, 237, 273, 322, 371, 420, 484, 548, 612, 693, 774, 855, 955, 1055, 1155, 1276, 1397, 1518, 1662, 1806, 1950, 2119, 2288, 2457, 2653, 2849, 3045, 3270, 3495, 3720, 3976, 4232, 4488, 4777, 5066, 5355, 5679
Offset: 0

Views

Author

N. J. A. Sloane, Mar 20 2004

Keywords

Crossrefs

Cf. A005993.

Programs

  • Maple
    seq(add(floor(i/3)^2, i=1..n+3), n=0..60); # Ridouane Oudra, Oct 19 2019
  • Mathematica
    a[n_] := Sum[Floor[i/3]^2, {i,1,n+3}]; Table[a[n], {n, 0, 100}] (* Enrique Pérez Herrero, Mar 20 2012 *)
  • Sage
    def A092353():
        a, b, c, m = 0, 0, 0, 0
        while True:
            yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+c*(c+1)*(2*c+1)+6)//6
            m = m + 1 if m < 2 else 0
            if   m == 0: a += 1
            elif m == 1: b += 1
            elif m == 2: c += 1
    a = A092353()
    print([next(a) for  in range(52)]) # _Peter Luschny, May 04 2016

Formula

G.f.: (1+x^3)/((1-x)^2*(1-x^3)^2) = (1+x^3)/((1-x)^4*(1+x+x^2)^2).
a(n) = Sum(i=1..n+3, floor(i/3)^2). - Enrique Pérez Herrero, Mar 20 2012
a(n) = (1/2)*(-4*t^3 + (2n-7)*t^2 + (4n-1)*t +2n +2), where t = floor(n/3). - Ridouane Oudra, Oct 19 2019

A139625 Table read by rows: T(n,k) is the number of strongly connected directed multigraphs with loops and no vertex of degree 0, with n arcs and k vertices, which are transitive (the existence of a path between two points implies the existence of an arc between those two points).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 6, 1, 10, 1, 19, 1, 28, 1, 1, 44, 2, 1, 60, 10, 1, 85, 31, 1, 110, 90, 1, 146, 222, 1, 182, 520, 1, 231, 1090, 1, 1, 280, 2180, 2, 1, 344, 4090, 11, 1
Offset: 1

Views

Author

Benoit Jubin, May 01 2008, Sep 01 2008

Keywords

Comments

Length of the n^th row: floor(sqrt(n)).
These graphs are reflexive (each vertex has a self-loop), so T(n,k) = sum(A139621(n-k^2,m),m=0..k)
T(n,1) = 1, T(n,2) = A005993(n-4), T(n,3) = A050927(n-9), T(n,4) = A050929(n-16).
Row sums: A139630.

Examples

			Triangle begins:
  1
  1
  1
  1  1
  1  2
  1  6
  1 10
  1 19
  1 28  1
		

Crossrefs

A168281 Triangle T(n,m) = 2*(min(n - m + 1, m))^2 read by rows.

Original entry on oeis.org

2, 2, 2, 2, 8, 2, 2, 8, 8, 2, 2, 8, 18, 8, 2, 2, 8, 18, 18, 8, 2, 2, 8, 18, 32, 18, 8, 2, 2, 8, 18, 32, 32, 18, 8, 2, 2, 8, 18, 32, 50, 32, 18, 8, 2, 2, 8, 18, 32, 50, 50, 32, 18, 8, 2, 2, 8, 18, 32, 50, 72, 50, 32, 18, 8, 2, 2, 8, 18, 32, 50, 72, 72, 50, 32, 18, 8, 2, 2, 8, 18, 32, 50, 72, 98, 72
Offset: 1

Views

Author

Paul Curtz, Nov 22 2009

Keywords

Comments

Row sums are A099956(n-1) = 2*A005993(n-1).
The flattened triangle is simply 2 followed by A137508.
If A106314 is interpreted as a triangle, T(n,m) = 2*A106314(n,m).

Examples

			The table starts in row n=1 with columns 1<=m<=n as:
  2;
  2,2;
  2,8,2;
  2,8,8,2;
  2,8,18,8,2;
  2,8,18,18,8,2;
  ...
		

Crossrefs

Programs

  • Maple
    A168281 := proc(n,m) 2*(min(n+1-m,m))^2 ; end proc:
    seq(seq(A168281(n,m),m=1..n),n=1..20) ;
  • Mathematica
    Table[Map[2 Min[n + # - 1, #]^2 &, Drop[#, -Boole@ EvenQ@ n] ~Join~ Reverse@ # &@ Range@ Floor[n/2]], {n, 2, 14}] // Flatten (* Michael De Vlieger, Jul 19 2016 *)

Extensions

Rephrased all comments in terms of a triangle by R. J. Mathar, Nov 24 2010
More terms from Michael De Vlieger, Jul 19 2016
Definition corrected by Georg Fischer, Nov 11 2021

A225972 The number of binary pattern classes in the (2,n)-rectangular grid with 3 '1's and (2n-3) '0's: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

0, 0, 1, 6, 14, 32, 55, 94, 140, 208, 285, 390, 506, 656, 819, 1022, 1240, 1504, 1785, 2118, 2470, 2880, 3311, 3806, 4324, 4912, 5525, 6214, 6930, 7728, 8555, 9470, 10416, 11456, 12529, 13702, 14910, 16224, 17575, 19038, 20540, 22160, 23821, 25606, 27434, 29392
Offset: 0

Views

Author

Yosu Yurramendi, May 26 2013

Keywords

Comments

Also the edge count of the n X n black bishop graph. - Eric W. Weisstein, Jun 26 2017

Crossrefs

Cf. A289179 (edge count of white bishop graph).

Programs

  • Magma
    [(1/4)*(Binomial(2*(n-1),3)+2*Binomial(n-2,1)*(1/2)*(1+(-1)^n)): n in [1..50]]; // Vincenzo Librandi, Sep 04 2013
  • Maple
    A225972:=n->(n-1)*(4*n^2-2*n-3*(-1)^n+3)/12; seq(A225972(n), n=0..40); # Wesley Ivan Hurt, Mar 02 2014
  • Mathematica
    Table[(n - 1)*(4*n^2 - 2*n - 3*(-1)^n + 3)/12, {n, 0, 40}] (* Bruno Berselli, May 29 2013 *)
    CoefficientList[Series[x^2 (1 + 4 x + x^2 + 2 x^3) / ((1 + x)^2 (1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 04 2013 *)
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 1, 6, 14, 32, 55}, 20] (* Eric W. Weisstein, Jun 27 2017 *)
  • R
    a <- vector()
        for(n in 0:40) a[n] <- (1/4)*(choose(2*(n-1),3) + 2*choose(n-2,1)*(1/2)*(1+(-1)^n))
        a  # Yosu Yurramendi and María Merino, Aug 21 2013
    

Formula

a(n) = A000330(n) + A142150(n) = (n-1)*(4*n^2 - 2*n - 3*(-1)^n + 3)/12.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) with n > 5, a(0)=0, a(1)=0, a(2)=1, a(3)=6, a(4)=14, a(5)=32.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 4*(n-4)*(-1)^n with n > 3, a(0)=0, a(1)=0, a(2)=1, a(3)=6.
G.f.: x^2*(1 + 4*x + x^2 + 2*x^3)/((1+x)^2*(1-x)^4). - Bruno Berselli, May 29 2013
a(n) = (1/4)*(binomial(2*(n-1),3) + 2*binomial(n-2,1)*(1/2)*(1+(-1)^n)). - Yosu Yurramendi and María Merino, Aug 21 2013
a(n) = A005993(n-2) + A199771(n-1), n >= 2. - Christopher Hunt Gribble, Mar 02 2014

Extensions

More terms from Vincenzo Librandi, Sep 04 2013
Previous Showing 11-20 of 39 results. Next