cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 145 results. Next

A073485 Product of any number of consecutive primes; squarefree numbers with no gaps in their prime factorization.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 13, 15, 17, 19, 23, 29, 30, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 105, 107, 109, 113, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 210, 211, 221, 223, 227, 229, 233
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A073484(a(n)) = 0 and A073483(a(n)) = 1;
See A097889 for composite terms. - Reinhard Zumkeller, Mar 30 2010
A169829 is a subsequence. - Reinhard Zumkeller, May 31 2010
a(A192280(n)) = 1: complement of A193166.
Also fixed points of A053590: a(n) = A053590(a(n)). - Reinhard Zumkeller, May 28 2012
The Heinz numbers of the partitions into distinct consecutive integers. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product_{j=1..r} prime(p_j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Example: (i) 15 (= 3*5) is in the sequence because it is the Heinz number of the partition [2,3]; (ii) 10 (= 2*5) is not in the sequence because it is the Heinz number of the partition [1,3]. - Emeric Deutsch, Oct 02 2015
Except for the term 1, each term can uniquely represented as A002110(k)/A002110(m) for k > m >= 0; 1 = A002110(k)/A002110(k) for all k. - Michel Marcus and Jianing Song, Jun 19 2019

Examples

			105 is a term, as 105 = 3*5*7 with consecutive prime factors.
		

Crossrefs

Complement: A193166.
Intersection of A005117 and A073491.
Subsequence of A277417.
Cf. A000040, A006094, A002110, A097889, A169829 (subsequences).
Cf. A096334.

Programs

  • Haskell
    a073485 n = a073485_list !! (n-1)
    a073485_list = filter ((== 1) . a192280) [1..]
    -- Reinhard Zumkeller, May 28 2012, Aug 26 2011
    
  • Maple
    isA073485 := proc(n)
        local plist,p,i ;
        plist := sort(convert(numtheory[factorset](n),list)) ;
        for i from 1 to nops(plist) do
            p := op(i,plist) ;
            if modp(n,p^2) = 0 then
                return false;
            end if;
            if i > 1 then
                if nextprime(op(i-1,plist)) <> p then
                    return false;
                end if;
            end if;
        end do:
        true;
    end proc:
    for n from 1 to 1000 do
        if isA073485(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Jan 12 2016
    # second Maple program:
    q:= proc(n) uses numtheory; n=1 or issqrfree(n) and (s->
          nops(s)=1+pi(max(s))-pi(min(s)))(factorset(n))
        end:
    select(q, [$1..288])[];  # Alois P. Heinz, Jan 27 2022
  • Mathematica
    f[n_] := FoldList[ Times, 1, Prime[ Range[n, n + 3]]]; lst = {}; k = 1; While[k < 55, AppendTo[lst, f@k]; k++ ]; Take[ Union@ Flatten@ lst, 65] (* Robert G. Wilson v, Jun 11 2010 *)
  • PARI
    list(lim)=my(v=List(primes(primepi(lim))),p,t);for(e=2, log(lim+.5)\log(2), p=1; t=prod(i=1,e-1,prime(i)); forprime(q=prime(e), lim, t*=q/p; if(t>lim,next(2)); listput(v,t); p=nextprime(p+1))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Oct 24 2012

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Oct 24 2012

Extensions

Alternative description added to the name by Antti Karttunen, Oct 29 2016

A325352 Heinz number of the differences plus one of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 6, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 9, 1, 16, 7, 17, 3, 12, 1, 19, 11, 20, 1, 15, 1, 22, 6, 23, 1, 24, 2, 10, 13, 26, 1, 12, 5, 28, 17, 29, 1, 18, 1, 31, 10, 32, 7, 21, 1, 34, 19, 15, 1, 24, 1, 37, 6, 38
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The only fixed point is 1 because otherwise the sequence decreases omega (A001222) by one.

Examples

			The partition (3,2,2,1) with Heinz number 90 has differences plus one (2,1,2) with Heinz number 18, so a(90) = 18.
		

Crossrefs

Positions of m's are A008578 (m = 1), A001248 (m = 2), A006094 (m = 3), A030078 (m = 4), A090076 (m = 5).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    db[n_]:=Times@@Prime/@(1+Differences[primeMS[n]]);
    Table[db[n],{n,100}]

A046301 Product of 3 successive primes.

Original entry on oeis.org

30, 105, 385, 1001, 2431, 4199, 7429, 12673, 20677, 33263, 47027, 65231, 82861, 107113, 146969, 190747, 241133, 290177, 347261, 409457, 478661, 583573, 716539, 871933, 1009091, 1113121, 1201289, 1317919, 1564259, 1879981, 2279269, 2494633, 2837407, 3127361, 3532343
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			From _K. D. Bajpai_, Aug 27 2014: (Start)
a(2) = 105 is in the sequence because 105 = 3* 5 * 7, product of three successive primes.
a(3) = 385 is in the sequence because 385 = 5 * 7 * 11, product of three successive primes.
(End)
		

Crossrefs

Programs

  • Haskell
    a046301 n = a046301_list !! (n-1)
    a046301_list = zipWith3 (((*) .) . (*))
                   a000040_list (tail a000040_list) (drop 2 a000040_list)
    -- Reinhard Zumkeller, May 12 2015
  • Magma
    [NthPrime(n)*NthPrime(n+1)*NthPrime(n+2): n in [1..31]]; /* Or: */ [&*[ NthPrime(n+k): k in [0..2] ]: n in [1..31] ]; // Bruno Berselli, Feb 25 2011
    
  • Maple
    A046301:=n->ithprime(n)*ithprime(n+1)*ithprime(n+2): seq(A028560(n), n=1..100);  # K. D. Bajpai, Aug 27 2014
  • Mathematica
    Table[Prime[n] Prime[n+1] Prime[n+2],{n,50}]   (* K. D. Bajpai, Aug 27 2014 *)
    Times@@@Partition[Prime[Range[40]],3,1] (* Harvey P. Dale, Mar 25 2019 *)
  • PARI
    a(n)=prime(n)*prime(n+1)*prime(n+2); \\ Joerg Arndt, Aug 30 2014
    

Formula

Sum_{n>=1} 1/a(n) = A242187. - Amiram Eldar, Nov 19 2020

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Jan 16 2012

A037165 a(n) = prime(n)*prime(n+1) - prime(n) - prime(n+1).

Original entry on oeis.org

1, 7, 23, 59, 119, 191, 287, 395, 615, 839, 1079, 1439, 1679, 1931, 2391, 3015, 3479, 3959, 4619, 5039, 5615, 6395, 7215, 8447, 9599, 10199, 10811, 11447, 12095, 14111, 16379, 17679, 18767, 20423, 22199, 23399, 25271, 26891, 28551, 30615, 32039
Offset: 1

Views

Author

Armand Turpel (armandt(AT)unforgettable.com)

Keywords

Comments

a(n) is also the Frobenius number of the numerical semigroup generated by prime(n) and prime(n+1). - Victoria A Sapko (vsapko(AT)math.unl.edu), Feb 21 2001

Crossrefs

Frobenius numbers for k successive primes: this sequence (k=2), A138989 (k=3), A138990 (k=4), A138991 (k=5), A138992 (k=6), A138993 (k=7), A138994 (k=8).

Programs

  • Magma
    [NthPrime(n)*NthPrime(n+1)-NthPrime(n)-NthPrime(n+1): n in [1..45]]; // Vincenzo Librandi, Dec 18 2012
    
  • Mathematica
    f[n_] := FrobeniusNumber[{Prime[n], Prime[n + 1]}]; Array[f, 41] (* Robert G. Wilson v, Aug 04 2012 *)
    Times@@#-Total[#]&/@Partition[Prime[Range[50]],2,1] (* Harvey P. Dale, Dec 27 2015 *)
  • PARI
    a(n)=my(p=prime(n),q=nextprime(p+1)); p*q-p-q \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) = A006094(n) - A001043(n). - Michel Marcus, Mar 02 2019

A332820 Integers in the multiplicative subgroup of positive rationals generated by the products of two consecutive primes and the cubes of primes. Numbers k for which A048675(k) is a multiple of three.

Original entry on oeis.org

1, 6, 8, 14, 15, 20, 26, 27, 33, 35, 36, 38, 44, 48, 50, 51, 58, 63, 64, 65, 68, 69, 74, 77, 84, 86, 90, 92, 93, 95, 106, 110, 112, 117, 119, 120, 122, 123, 124, 125, 141, 142, 143, 145, 147, 156, 158, 160, 161, 162, 164, 170, 171, 177, 178, 185, 188, 196, 198, 201, 202, 208, 209, 210, 214, 215, 216, 217, 219, 221, 225
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between this sequence, A332821 and A332822, which list the integers in respective cosets of the subgroup.
As the sequence lists the integers in a multiplicative subgroup of the positive rationals, the sequence is closed under multiplication and, provided the result is an integer, under division.
It follows that for any n in this sequence, all powers n^k are present (k >= 0), as are all cubes.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting numbers are a permutation of the full sequence; and if we take the square root of each square term we get the full sequence.
There are no primes in the sequence, therefore if k is present and p is a prime, k*p and k/p are absent (noting that k/p might not be an integer). This property extends from primes to all terms of A050376 (often called Fermi-Dirac primes), therefore to squares of primes, 4th powers of primes etc.
The terms are the even numbers in A332821 halved. The terms are also the numbers m such that 5m is in A332821, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332822, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332822, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332821, which consists exactly of those numbers. These properties extend in a pattern of alternating primes as described in the previous paragraph.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.
If m and n are in this sequence then so is m*n (the definition of "multiplicative semigroup"), while if n is in this sequence, and x is in the complement A359830, then n*x is in A359830. This essentially follows from the fact that A048675 is totally additive sequence. Compare to A329609. - Antti Karttunen, Jan 17 2023

Crossrefs

Positions of zeros in A332823; equivalently, numbers in row 3k of A277905 for some k >= 0.
Cf. A048675, A195017, A332821, A332822, A353350 (characteristic function), A353348 (its Dirichlet inverse), A359830 (complement).
Subsequences: A000578\{0}, A006094, A090090, A099788, A245630 (A191002 in ascending order), A244726\{0}, A325698, A338471, A338556, A338907.
Subsequence of {1} U A268388.

Programs

  • Mathematica
    Select[Range@ 225, Or[Mod[Total@ #, 3] == 0 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]], # == 1] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332820(n) =  { my(f = factor(n)); !((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); };

Formula

{a(n) : n >= 1} = {1} U {2 * A332822(k) : k >= 1} U {A003961(a(k)) : k >= 1}.
{a(n) : n >= 1} = {1} U {a(k)^2 : k >= 1} U {A331590(2, A332822(k)) : k >= 1}.
From Peter Munn, Mar 17 2021: (Start)
{a(n) : n >= 1} = {k : k >= 1, 3|A048675(k)}.
{a(n) : n >= 1} = {k : k >= 1, 3|A195017(k)}.
{a(n) : n >= 1} = {A332821(k)/2 : k >= 1, 2|A332821(k)}.
{a(n) : n >= 1} = {A332822(k)/3 : k >= 1, 3|A332822(k)}.
(End)

Extensions

New name from Peter Munn, Mar 08 2021

A046303 Product of 5 successive primes.

Original entry on oeis.org

2310, 15015, 85085, 323323, 1062347, 2800733, 6678671, 14535931, 31367009, 58642669, 95041567, 162490421, 259106347, 385499687, 600662303, 907383479, 1249792339, 1673450759, 2276990377, 3024658859, 4132280413, 5717264681
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Magma
    [&*[ NthPrime(n+k): k in [0..4] ]: n in [1..22]];  // Bruno Berselli, Feb 25 2011
    
  • Mathematica
    lst={};Do[p0=Prime[n];p1=Prime[n+1];p2=Prime[n+2];p3=Prime[n+3];p4=Prime[n+4];a=p0*p1*p2*p3*p4;AppendTo[lst,a],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)
    Times@@@Partition[Prime[Range[200]],5,1] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    first(n)=my(P=primes(n+4)); vector(n,i,prod(j=i,i+4,P[j])) \\ Charles R Greathouse IV, Jun 27 2019

Formula

a(n) = Product_{j=n..n+4} prime(j). - Jon E. Schoenfield, Jan 07 2015
a(n) ~ (n log n)^5. - Charles R Greathouse IV, Jun 27 2019

A104210 Positive integers divisible by at least 2 consecutive primes.

Original entry on oeis.org

6, 12, 15, 18, 24, 30, 35, 36, 42, 45, 48, 54, 60, 66, 70, 72, 75, 77, 78, 84, 90, 96, 102, 105, 108, 114, 120, 126, 132, 135, 138, 140, 143, 144, 150, 154, 156, 162, 165, 168, 174, 175, 180, 186, 192, 195, 198, 204, 210, 216, 221, 222, 225, 228, 231, 234, 240
Offset: 1

Views

Author

Leroy Quet, Mar 13 2005

Keywords

Comments

If a perfect square is in this sequence, then so is its square root (e.g., 144 and 12). - Alonso del Arte, May 07 2012
The numbers of terms not exceeding 10^k, for k=1,2,..., are 1, 22, 242, 2456, 24632, 246414, 2464272, 24643281, 246433426, ... Apparently, the asymptotic density of this sequence is 0.24643... - Amiram Eldar, Apr 10 2021

Examples

			35 is divisible by both 5 and 7, and 5 and 7 are consecutive primes.
77 is divisible by both 7 and 11, and 7 and 11 are consecutive primes.
110 is not in the sequence because, although it is divisible by 2, 5 and 11, it is not divisible by 3 or 7.
		

Crossrefs

Cf. A003961, A296210 (characteristic function), A319630 (complement), A379230 [= A252748(a(n))].
Positions of terms larger than 1 in A300820 and in A322361.
Subsequences: A006094, A349169 (conjectured, after its initial 1), A349176, A355527 (squarefree terms), A372566, A378884, A379232.

Programs

  • Maple
    N:= 1000: # for terms <= N
    R:= {}:
    p:= 2:
    do
      q:= p; p:= nextprime(p);
      if p*q > N then break fi;
      R:= R union {seq(i,i=p*q..N,p*q)}
    od:
    sort(convert(R,list)); # Robert Israel, Apr 13 2020
  • Mathematica
    fQ[n_] := Block[{lst = PrimePi /@ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]}, Count[ Drop[lst, 1] - Drop[lst, -1], 1] > 0]; Select[ Range[244], fQ[ # ] &] (* Robert G. Wilson v, Mar 16 2005 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    is_A104210(n) = (gcd(n,A003961(n))>1); \\ Antti Karttunen, Dec 24 2024

Formula

{k such that gcd(k, A003961(k)) > 1}. - Antti Karttunen, Dec 24 2024

Extensions

More terms from Robert G. Wilson v, Mar 16 2005

A090076 a(n) = prime(n)*prime(n+2).

Original entry on oeis.org

10, 21, 55, 91, 187, 247, 391, 551, 713, 1073, 1271, 1591, 1927, 2279, 2773, 3233, 3953, 4331, 4891, 5609, 6059, 7031, 8051, 8989, 9991, 10807, 11227, 12091, 13843, 14803, 17399, 18209, 20413, 20989, 23393, 24613, 26219, 28199, 29893, 31313
Offset: 1

Views

Author

Felix Tubiana, Jan 21 2004

Keywords

Comments

Subsequence of A192133. - Reinhard Zumkeller, Jun 26 2011
For n > 1: A078898(a(n)) = 4. - Reinhard Zumkeller, Apr 06 2015

Examples

			a(5) = prime(5)*prime(7) = 11*17 = 187.
		

Crossrefs

Subset of the squarefree semiprimes, A006881. Cf. A006094, A090090.
Cf. A078898.

Programs

  • Haskell
    a090076 n = a090076_list !! (n-1)
    a090076_list = zipWith (*) a000040_list $ drop 2 a000040_list
    -- Reinhard Zumkeller, Dec 17 2014
  • Mathematica
    Table[Prime[n] Prime[n + 2], {n, 1, 40}] (* Robert G. Wilson v, Jan 22 2004 *)
    Last[#]First[#]&/@Partition[Prime[Range[50]],3,1] (* Harvey P. Dale, May 08 2013 *)
  • MuPAD
    ithprime(i)*ithprime(i+2) $ i = 1..40 // Zerinvary Lajos, Feb 26 2007
    
  • Sage
    def prime_gaps(n):
        primegaps = []
        nprimes = primes_first_n(n+1)
        for i in range(2, n+1):
            primegaps.append(nprimes[i]*nprimes[i-2])
        return primegaps
    print(prime_gaps(60)) # Zerinvary Lajos, Jul 08 2008
    

Extensions

Extended by Robert G. Wilson v, Jan 22 2004

A046302 Products of 4 successive primes.

Original entry on oeis.org

210, 1155, 5005, 17017, 46189, 96577, 215441, 392863, 765049, 1363783, 2022161, 3065857, 4391633, 6319667, 8965109, 12780049, 17120443, 21182921, 27433619, 33984931, 42600829, 56606581, 72370439, 89809099, 107972737, 121330189
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Magma
    [&*[ NthPrime(n+k): k in [0..3] ]: n in [1..26] ]; // Bruno Berselli, Feb 25 2011
  • Mathematica
    lst={};Do[p0=Prime[n];p1=Prime[n+1];p2=Prime[n+2];p3=Prime[n+3];a=p0*p1*p2*p3;AppendTo[lst,a],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)
    Times@@@Partition[Prime[Range[50]],4,1] (* Harvey P. Dale, Sep 19 2011 *)

Formula

a(n) = Product_{j=n..n+3} prime(j). - Jon E. Schoenfield, Jan 07 2015

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Jan 16 2012

A089581 a(n) = prime(2*n-1)*prime(2*n).

Original entry on oeis.org

6, 35, 143, 323, 667, 1147, 1763, 2491, 3599, 4757, 5767, 7387, 9797, 11021, 12317, 16637, 19043, 22499, 25591, 28891, 32399, 36863, 39203, 47053, 51983, 55687, 60491, 67591, 72899, 77837, 82919, 95477, 99221, 111547, 121103, 126727, 136891
Offset: 1

Views

Author

Norbert A'Campo (nac(AT)member.ams.org), Dec 29 2003

Keywords

Comments

a(n+1) is the smallest squarefree composite number that is relatively prime to the first 2*n prime numbers.
Bisection of A006094. - R. J. Mathar, Jan 23 2013

Examples

			a(13)=9797
		

Programs

  • Mathematica
    Table[Prime[2 n - 1] Prime[2 n], {n, 30}] (* Michael De Vlieger, Jul 21 2016 *)
    Times@@@Partition[Prime[Range[80]],2] (* Harvey P. Dale, Jan 12 2022 *)
  • PARI
    p=2;q=3;i=1;a=vector(100);for(i=1,100,a[i]=p*q;p=nextprime(q+1);q=nextprime(p+1));a

Formula

prime(2*n-1)*prime(2*n), n=1, 2, 3 ...

Extensions

Edited by Zak Seidov, Jun 13 2006
Typo in PARI program fixed by Zak Seidov, May 19 2010
Previous Showing 21-30 of 145 results. Next