cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A106261 Expansion of 1/sqrt(1 - 20*x - 20*x^2).

Original entry on oeis.org

1, 10, 160, 2800, 51400, 970000, 18640000, 362800000, 7128700000, 141103000000, 2809273600000, 56197096000000, 1128614356000000, 22741607080000000, 459548117440000000, 9309106936000000000, 188980474087000000000
Offset: 0

Views

Author

Paul Barry, Apr 28 2005

Keywords

Comments

Central coefficient of (1 + 10x + 30x^2)^n. Tenth binomial transform of 1/sqrt(1 - 120x^2). In general, 1/sqrt(1 - 4*r*x - 4*r*x^2) has e.g.f. exp(2rx)*BesselI(0,2r*sqrt((r+1)/r)x)), and a(n) = Sum_{k=0..n} C(2k,k)*C(k,n-k)*r^k gives the central coefficient of (1 + (2r)*x + r(r+1)*x^2) and is the (2r)-th binomial transform of 1/sqrt(1 - 8*C(n+1,2)x^2).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1-20*x-20*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2013 *)
  • PARI
    for(n=0,25, print1(sum(k=0,n,binomial(2*k,k)*binomial(k,n-k)*5^k), ", ")) \\ G. C. Greubel, Jan 31 2017

Formula

E.g.f.: exp(10*x)*BesselI(0, 10*sqrt(6/5)*x).
a(n) = Sum_{k=0..n} C(2k, k)*C(k, n-k)*5^k.
D-finite with recurrence: n*a(n) + 10*(-2*n+1)*a(n-1) + 20*(-n+1)*a(n-2) = 0. - R. J. Mathar, Nov 26 2012
a(n) ~ sqrt((1+sqrt(5/6))/2) * (10+2*sqrt(30))^n / sqrt(Pi*n). - Vaclav Kotesovec, Oct 19 2013

A115951 Expansion of 1/sqrt(1-4*x*y-4*x^2*y).

Original entry on oeis.org

1, 0, 2, 0, 2, 6, 0, 0, 12, 20, 0, 0, 6, 60, 70, 0, 0, 0, 60, 280, 252, 0, 0, 0, 20, 420, 1260, 924, 0, 0, 0, 0, 280, 2520, 5544, 3432, 0, 0, 0, 0, 70, 2520, 13860, 24024, 12870, 0, 0, 0, 0, 0, 1260, 18480, 72072, 102960, 48620, 0, 0, 0, 0, 0, 252, 13860, 120120, 360360, 437580, 184756
Offset: 0

Views

Author

Paul Barry, Mar 14 2006

Keywords

Comments

Row sums are A006139. Diagonal sums are A115962.
Coefficients of 2^n * P(n, x) with P the Legendre P polynomials. Reflection of triangle A008556. - Ralf Stephan, Apr 07 2016.

Examples

			Triangle begins
   1,
   0,  2,
   0,  2,  6,
   0,  0, 12,  20,
   0,  0,  6,  60,  70,
   0,  0,  0,  60, 280,  252,
   0,  0,  0,  20, 420, 1260, 924
		

Crossrefs

Cf. A006139 (row sums), A063007 (binomial transform), A115962 (diagonal sums).

Programs

  • Magma
    /* As triangle */ [[Binomial(2*k,k)*Binomial(k,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 03 2015
    
  • Mathematica
    Table[Binomial[2k, k]Binomial[k, n-k], {n, 0, 10}, {k, 0, n}]//Flatten (* Michael De Vlieger, Sep 02 2015 *)
  • PARI
    {T(n,k) = binomial(2*k,k)*binomial(k,n-k)}; \\ G. C. Greubel, May 06 2019
    
  • Sage
    [[binomial(2*k,k)*binomial(k,n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 06 2019

Formula

Number triangle T(n,k) = C(2k,k)*C(k,n-k).
From Peter Bala, Sep 02 2015: (Start)
Binomial transform is A063007; equivalently, P * M = A063007, where P denotes Pascal's triangle A007318 and M denotes the present array.
P * M * P^-1 is a signed version of A063007. (End)

A374497 Expansion of 1/(1 - 4*x - 4*x^2)^(3/2).

Original entry on oeis.org

1, 6, 36, 200, 1080, 5712, 29792, 153792, 787680, 4009280, 20304768, 102405888, 514678528, 2579028480, 12890311680, 64283809792, 319954540032, 1589720712192, 7886437652480, 39069462835200, 193307835764736, 955361266917376, 4716674314223616, 23264437702656000
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Sum[(2*k+1)*Binomial[2*k,k]*Binomial[k,n-k],{k,0,n}]; Array[a,24,0] (* Stefano Spezia, May 08 2025 *)
  • PARI
    a(n) = binomial(n+2, 2)*sum(k=0, n\2, 2^(n-k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1));

Formula

a(0) = 1, a(1) = 6; a(n) = (2*(2*n+1)*a(n-1) + 4*(n+1)*a(n-2))/n.
a(n) = binomial(n+2,2) * A071356(n).
a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(k,n-k). - Seiichi Manyama, Oct 19 2024
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(n+1,n-2*k) * binomial(2*k+1,k). - Seiichi Manyama, Aug 20 2025

A386621 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*k*x - 4*x^2).

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 1, 4, 8, 0, 1, 6, 26, 32, 6, 1, 8, 56, 184, 136, 0, 1, 10, 98, 576, 1366, 592, 20, 1, 12, 152, 1328, 6216, 10424, 2624, 0, 1, 14, 218, 2560, 18886, 68976, 80996, 11776, 70, 1, 16, 296, 4392, 45256, 276208, 779456, 637424, 53344, 0
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Examples

			Square array begins:
   1,    1,     1,      1,       1,        1,        1, ...
   0,    2,     4,      6,       8,       10,       12, ...
   2,    8,    26,     56,      98,      152,      218, ...
   0,   32,   184,    576,    1328,     2560,     4392, ...
   6,  136,  1366,   6216,   18886,    45256,    92886, ...
   0,  592, 10424,  68976,  276208,   822800,  2020392, ...
  20, 2624, 80996, 779456, 4114004, 15235520, 44758244, ...
		

Crossrefs

Columns k=0..3 give A126869, A006139, A098443, A387428.
Main diagonal gives A387430.

Programs

  • PARI
    a(n, k) = sum(j=0, n\2, (k^2+1)^j*(2*k)^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j));

Formula

A(n,k) = Sum_{j=0..n} (k-i)^j * (k+i)^(n-j) * binomial(n,j)^2, where i is the imaginary unit.
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-2*j) * binomial(2*(n-j),n-j) * binomial(n-j,j).
n*A(n,k) = 2*k*(2*n-1)*A(n-1,k) + 4*(n-1)*A(n-2,k) for n > 1.
A(n,k) = Sum_{j=0..floor(n/2)} (k^2+1)^j * (2*k)^(n-2*j) * binomial(n,2*j) * binomial(2*j,j).
A(n,k) = [x^n] (1 + 2*k*x + (k^2+1)*x^2)^n.
E.g.f. of column k: exp(2*k*x) * BesselI(0, 2*sqrt(k^2+1)*x).

A179191 Expansion of o.g.f. (1/2)*(-1 + 1/sqrt(1 - 4*x - 4*x^2)).

Original entry on oeis.org

0, 1, 4, 16, 68, 296, 1312, 5888, 26672, 121696, 558464, 2574848, 11917952, 55345408, 257741824, 1203224576, 5629027072, 26383656448, 123868321792, 582414688256, 2742116907008, 12926036258816, 60998951747584, 288147689046016, 1362407763795968, 6447125560016896
Offset: 0

Views

Author

Clark Kimberling, Jul 01 2010

Keywords

Comments

G.f. A(x) satisfies A(x)^2 + A(x) = (x^2 + x)/(1 - 4*x - 4*x^2). - Michael Somos, Jan 28 2019

Examples

			G.f. = x + 4*x^2 + 16*x^3 + 68*x^4 + 296*x^5 + 1312*x^6 + 5888*x^7 + ....
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (-1 + 1/Sqrt(1-4*x-4*x^2))/2 )); // G. C. Greubel, Jan 25 2019
    
  • Mathematica
    CoefficientList[1/2 (-1 + (1-4x-4x^2)^(-1/2)) + O[x]^23, x] (* Jean-François Alcover, Jul 27 2018 *)
  • Maxima
    a(n):=sum(m*sum(sum(binomial(i-1,k-1)*binomial(i,n-i),i,k,n)*sum(binomial(j,2*j-m-k)*binomial(k,j),j,0,k)/k,k,m,n),m,1,n); /* Vladimir Kruchinin, Mar 11 2011 */
    a(n):=sum(2^(n-k-1)*binomial(n,k)*binomial(n-k,k),k,0,n); /* Vladimir Kruchinin, Mar 12 2015 */
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec((-1 +1/sqrt(1-4*x-4*x^2))/2)) \\ G. C. Greubel, Jan 25 2019
    
  • Sage
    ((-1 + 1/sqrt(1-4*x-4*x^2))/2).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 25 2019

Formula

G.f.: (1/2)*(-1 + 1/sqrt(1 - 4*x - 4*x^2)).
G.f.: A(x) = x*A001006(A000045(x)/x-1)/(1-x*A001006(A000045(x)/x-1)).
a(n) = Sum_{m=1..n} m*Sum_{k=m..n} (Sum_{i=k..n} binomial(i-1,k-1)*binomial(i,n-i))*(Sum_{j=0..k} binomial(j,2*j-m-k)*binomial(k,j))/k. - Vladimir Kruchinin, Mar 11 2011
a(n) = Sum_{k=0..n} 2^(n-k-1)*binomial(n,k)*binomial(n-k,k). - Vladimir Kruchinin, Mar 12 2015
From Vaclav Kotesovec, Jan 26 2019: (Start)
D-finite with recurrence: n*a(n) = 2*(2*n - 1)*a(n-1) + 4*(n-1)*a(n-2).
a(n) ~ 2^(n - 7/4) * (1 + sqrt(2))^(n + 1/2) / sqrt(Pi*n). (End)
0 = a(n)*(16*a(n+1) +24*a(n+2) -8*a(n+3)) + a(n+1)*(+8*a(n+1) +16*a(n+2) -6*a(n+3)) + a(n+2)*(-2*a(n+2) +a(n+3)) for all n in Z except n=-1. - Michael Somos, Jan 27 2019
a(n) = A006139(n)/2, n>0. - R. J. Mathar, Jan 24 2020

A307910 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Examples

			Square array begins:
   1,   1,     1,     1,      1,       1,       1, ...
   0,   1,     2,     3,      4,       5,       6, ...
   0,   3,     8,    15,     24,      35,      48, ...
   0,   7,    32,    81,    160,     275,     432, ...
   0,  19,   136,   459,   1120,    2275,    4104, ...
   0,  51,   592,  2673,   8064,   19375,   40176, ...
   0, 141,  2624, 15849,  59136,  168125,  400896, ...
   0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
		

Crossrefs

Columns k=0..4 give A000007, A002426, A006139, A122868, A059304.
Main diagonal gives A092366.

Programs

  • Mathematica
    A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + k*x^2)^n.
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j) * binomial(2*j,j).
n * A(n,k) = k * (2*n-1) * A(n-1,k) - k * (k-4) * (n-1) * A(n-2,k).

A361813 Expansion of 1/sqrt(1 - 4*x*(1+x)^4).

Original entry on oeis.org

1, 2, 14, 80, 486, 3030, 19184, 122924, 794678, 5173160, 33863666, 222683588, 1469908848, 9733916596, 64636957300, 430240178484, 2869778018070, 19177245746844, 128361805431752, 860443079597872, 5775392952659170, 38811408514848032, 261101034656317244
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^4))

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(4*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) + 4*(2*n-2)*a(n-2) + 6*(2*n-3)*a(n-3) + 4*(2*n-4)*a(n-4) + (2*n-5)*a(n-5) ) for n > 4.

A361814 Expansion of 1/sqrt(1 - 4*x*(1+x)^5).

Original entry on oeis.org

1, 2, 16, 100, 660, 4482, 30886, 215364, 1515000, 10730800, 76426846, 546792056, 3926775646, 28290272420, 204375145480, 1479963148220, 10739326203132, 78072933869364, 568503202324540, 4145718464390120, 30271771382355430, 221305746414518180
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^5))
    
  • PARI
    a(n)= sum(k=0, n, binomial(2*k,k) * binomial(5*k,n-k)) \\ Winston de Greef, Mar 25 2023

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(5*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) + 5*(2*n-2)*a(n-2) + 10*(2*n-3)*a(n-3) + 10*(2*n-4)*a(n-4) + 5*(2*n-5)*a(n-5) + (2*n-6)*a(n-6) ) for n > 5.

A361830 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(2*j,j) * binomial(k*j,n-j).

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 10, 32, 70, 1, 2, 12, 46, 136, 252, 1, 2, 14, 62, 226, 592, 924, 1, 2, 16, 80, 342, 1136, 2624, 3432, 1, 2, 18, 100, 486, 1932, 5810, 11776, 12870, 1, 2, 20, 122, 660, 3030, 11094, 30080, 53344, 48620
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Examples

			Square array begins:
    1,   1,    1,    1,    1,    1, ...
    2,   2,    2,    2,    2,    2, ...
    6,   8,   10,   12,   14,   16, ...
   20,  32,   46,   62,   80,  100, ...
   70, 136,  226,  342,  486,  660, ...
  252, 592, 1136, 1932, 3030, 4482, ...
		

Crossrefs

Columns k=0..5 give A000984, A006139, A137635, A361812, A361813, A361814.
Main diagonal gives A361829.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(2*j, j)*binomial(k*j, n-j));

Formula

G.f. of column k: 1/sqrt(1 - 4*x*(1+x)^k).
n*T(n,k) = 2 * Sum_{j=0..k} binomial(k,j)*(2*n-1-j)*T(n-1-j,k) for n > k.

A374511 Expansion of 1/(1 - 4*x - 4*x^2)^(5/2).

Original entry on oeis.org

1, 10, 80, 560, 3640, 22512, 134400, 781440, 4451040, 24939200, 137865728, 753625600, 4080643840, 21916106240, 116877312000, 619457482752, 3265293719040, 17128725519360, 89462514606080, 465434423336960, 2412895587536896, 12468681310412800, 64242981906022400
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=2^(n-3) Pochhammer[n+1, 4]*Hypergeometric2F1[(1-n)/2, -n/2, 3, 2]/3; Array[a,23,0] (* Stefano Spezia, Jul 10 2024 *)
  • PARI
    a(n) = binomial(n+4, 2)/6*sum(k=0, n\2, 2^(n-k)*binomial(n+2, n-2*k)*binomial(2*k+2, k));

Formula

a(0) = 1, a(1) = 10; a(n) = (2*(2*n+3)*a(n-1) + 4*(n+3)*a(n-2))/n.
a(n) = (binomial(n+4,2)/6) * Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = 2^(n-3)*Pochhammer(n+1, 4)*hypergeom([(1-n)/2, -n/2], [3], 2)/3. - Stefano Spezia, Jul 10 2024
a(n) = Sum_{k=0..n} (-4)^k * binomial(-5/2,k) * binomial(k,n-k). - Seiichi Manyama, Oct 19 2024
Previous Showing 21-30 of 48 results. Next