cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A006534 Number of one-sided triangular polyominoes (n-iamonds) with n cells; turning over not allowed, holes are allowed.

Original entry on oeis.org

1, 1, 1, 4, 6, 19, 43, 120, 307, 866, 2336, 6588, 18373, 52119, 147700, 422016, 1207477, 3471067, 9999135, 28893560, 83665729, 242826187, 706074369, 2056870697, 6001555275, 17538335077, 51323792789, 150390053432, 441210664337, 1295886453860, 3810208448847, 11214076720061, 33035788241735
Offset: 1

Views

Author

Keywords

Comments

The figures are formed by connecting n regular triangles by edges.
"Turning over not allowed" means that axial symmetric polyiamonds are counted separately, thus a(4) = 4 and a(5) = 6 while A000577(4) = 3 and A000577(5) = 4, cf. examples. - M. F. Hasler, Nov 12 2017

Examples

			From _M. F. Hasler_, Nov 12 2017: (Start)
Putting dots for the approximate center of the regular triangles (alternatively flipped up and down for neighboring dots), we have:
a(4) = #{ .... , .:. , ..: , :.. } = 4, while ..: and :.. are considered equivalent and not counted twice in A000577(4) = 3.
a(5) = #{ ..... , ...: , :... , ..:. , .:.. , :.: } = 6, and again the 2nd & 3rd and 4th & 5th are considered equivalent and not counted twice in A000577(5) = 4. (End)
		

References

  • F. Harary, Graphical enumeration problems; in Graph Theory and Theoretical Physics, ed. F. Harary, Academic Press, London, 1967, pp. 1-41.
  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. J. Torbijn, Polyiamonds, J. Rec. Math. 2 (1969), 216-227.

Crossrefs

Cf. A000577 (same with "turning over allowed"), A030223, A030224, A001420.

Extensions

Corrected and extended by David W. Wilson
a(19) from Achim Flammenkamp, Feb 15 1999
a(20) to a(28) from Joseph Myers, Sep 24 2002
Edited by M. F. Hasler, Nov 12 2017
More terms from John Mason, Oct 28 2023

A019424 Numbers whose sum of divisors is a sixth power.

Original entry on oeis.org

1, 2667, 3937, 17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117, 172011, 253921, 640737
Offset: 1

Views

Author

Keywords

Examples

			sigma(2667) = 1+3+7+21+127+381+889+2667 = 4096 = 4^6.
sigma(3937) = 1+31+127+3937 = 4096 = 4^6.
		

Crossrefs

Programs

  • Magma
    [n:n in [1..100000]| IsPower(SumOfDivisors(n),6)]; // Marius A. Burtea, Apr 17 2019
  • Mathematica
    Select[Range[700000],IntegerQ[Surd[DivisorSigma[1,#],6]]&] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    c=0; for(n=1, 306455560, if(ispower(sigma(n), 6), c++; write("b019424.txt", c " " n))) /* Donovan Johnson, Jun 13 2013 */
    

A048256 Numbers whose sum of divisors is 6^6 = 46656.

Original entry on oeis.org

17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117
Offset: 1

Views

Author

Keywords

Comments

Sequence has A048253(6)=30 terms from A048251(6)=17490 to A048252(6)=46117. - Ray Chandler, Sep 01 2010

Examples

			The divisors of 19410 are 1, 2, 3, 5, 6, 10, 15, 30, 647, 1294, 1941, 3235, 3882, 6470, 9705, and 19410; their sum is 46656, so 19410 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[6^6], DivisorSigma[1, # ] == 6^6 &] (* Ray Chandler, Sep 01 2010 *)

A048257 Integers whose sum of divisors is a 7th power.

Original entry on oeis.org

1, 93, 127, 11811, 112890, 120054, 124338, 127330, 132770, 133998, 134090, 137058, 138754, 139962, 146710, 148665, 148810, 149534, 153986, 155510, 160215, 161194, 164985, 167134, 170986, 173098, 183687, 184682, 187143, 191913, 198485, 206823, 206965, 207687
Offset: 1

Views

Author

Keywords

Comments

If m and n are coprime members of the sequence, then m*n is also a member. - Robert Israel, May 10 2018

Examples

			Divisors(11811) = {1,3,31,93,127,381,3937,11811} and sigma(11811) = 16384 = 4^7.
		

Crossrefs

Programs

  • Maple
    filter:= n -> type(map(t -> t[2]/7, ifactors(numtheory:-sigma(n))[2]),list(integer)):
    select(filter, [$1..21*10^4]); # Robert Israel, May 09 2018
  • Mathematica
    Select[Range[210000],IntegerQ[Surd[DivisorSigma[1,#],7]]&] (* Harvey P. Dale, Jun 09 2017 *)
  • PARI
    isok(n) = ispower(sigma(n), 7); \\ Michel Marcus, Dec 20 2013

Formula

sigma(a(n)) = x^7, where the initial values of x are 1, 2, 4, 6 (48 times), ...

A048258 Integers whose sum of divisors is an 8th power.

Original entry on oeis.org

1, 217, 57337, 600270, 621690, 669990, 685290, 693294, 693770, 699810, 725934, 747670, 769930, 774894, 782598, 805970, 813378, 823938, 835670, 839802, 854930, 865490, 873334, 895594, 918435, 920414, 923410, 931634, 935715, 959565, 965174, 969034, 969206
Offset: 1

Views

Author

Keywords

Examples

			Divisors(217) = {1,7,31,217}, sum = 256 = 2^8.
Divisors(57337) = {1,7,8191,57337}, sum = 65536 = 4^8.
Divisors(1676377) = {1,647,2591,1676377}, sum = 1679616 = 6^8.
		

Crossrefs

Programs

Formula

Sigma(1, a(n)) = x^8, where the initial values of x are 1, 2, 4, 6 (occurs 85 times), ...

A186438 Positive numbers whose squares end in two identical digits.

Original entry on oeis.org

10, 12, 20, 30, 38, 40, 50, 60, 62, 70, 80, 88, 90, 100, 110, 112, 120, 130, 138, 140, 150, 160, 162, 170, 180, 188, 190, 200, 210, 212, 220, 230, 238, 240, 250, 260, 262, 270, 280, 288, 290, 300, 310, 312, 320, 330, 338, 340, 350, 360, 362, 370, 380, 388, 390, 400, 410, 412
Offset: 1

Views

Author

Michel Lagneau, Feb 21 2011

Keywords

Comments

The numbers are of the form : 10k, or 50k - 12, or 50k + 12, or 50k + 38.

Examples

			62 is in the sequence because 62^2 = 3844.
		

References

  • Jean Meeus, Letter to N. J. A. Sloane, Dec 26 1974.

Crossrefs

Cf. A016742 (even squares), A123912.

Programs

  • Maple
    with(numtheory):T:=array(1..10):for p from 1 to 1000 do:n:=p^2:l:=length(n):n0:=n:for
      m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :T[m]:=u:od:if T[1]=T[2]
      then printf(`%d, `,p):else fi:od:
  • Mathematica
    tidQ[n_]:=Module[{idn=IntegerDigits[n^2]},idn[[-1]]==idn[[-2]]]; Select[ Range[ 4,500],tidQ] (* or *) LinearRecurrence[{1,0,0,0,0,0,1,-1},{10,12,20,30,38,40,50,60},60] (* Harvey P. Dale, Jan 25 2014 *)

Formula

G.f.: 2*x*(5*x^6+x^5+4*x^4+5*x^3+4*x^2+x+5)/((x-1)^2 * (x^6+x^5+x^4+x^3+x^2+x+1)). [Colin Barker, Jul 02 2012]

A256151 Triangular numbers n such that sigma(n) is a square number.

Original entry on oeis.org

1, 3, 66, 210, 820, 2346, 4278, 22578, 27966, 32131, 35511, 51681, 53956, 102378, 169653, 173755, 177906, 223446, 241860, 256686, 306153, 310866, 349866, 431056, 434778, 470935, 491536, 512578, 567645, 579426, 688551, 799480, 845650, 893116, 963966, 1031766, 1110795, 1200475, 1613706, 1719585
Offset: 1

Views

Author

Antonio Roldán, Mar 16 2015

Keywords

Comments

This sequence is the intersection of A000217 and A006532.
The corresponding triangular indices are in A116990. - Michel Marcus, Mar 17 2015

Examples

			3 is in the sequence because 3=2*3/2 is triangular, and sigma(3)=1+3=4=2^2 is square.
		

Crossrefs

Programs

  • Magma
    [n*(n+1) div 2: n in [1..2000] | IsSquare(SumOfDivisors(n*(n+1) div 2))]; // Vincenzo Librandi, Mar 17 2015
  • Mathematica
    Select[Accumulate[Range[0, 2000]], IntegerQ@Sqrt@DivisorSigma[1, #] &] (* Michael De Vlieger, Mar 17 2015 *)
  • PARI
    {for(i=1,2*10^3,n=i*(i+1)/2;if(issquare(sigma(n)),print1(n,", ")))}
    

A048252 Largest number whose sum of divisors is 6^n.

Original entry on oeis.org

1, 5, 22, 187, 1219, 7597, 46117, 278857, 1676377, 10067797, 60450517, 362758177, 2176626817, 13060193977, 78363525817, 470183516857, 2820894903487, 16926601754197, 101559860054047, 609359671998037, 3656158318966357
Offset: 0

Views

Author

Keywords

Comments

Terms of this sequence are products of distinct terms in A005105. - Ray Chandler, Sep 01 2010

Crossrefs

Programs

  • PARI
    a(n) = {sn = 6^n; forstep(x=sn, 1, -1, if (sigma(x) == sn, return (x)););} \\ Michel Marcus, Dec 15 2013

Extensions

a(9)-a(14) from Donovan Johnson, Sep 02 2008
a(15)-a(20) from Donovan Johnson, Nov 22 2008
Edited and extended by Ray Chandler, Sep 01 2010

A256152 Numbers k such that k is the product of two distinct primes and sigma(k) is a square number.

Original entry on oeis.org

22, 94, 115, 119, 214, 217, 265, 382, 497, 517, 527, 679, 745, 862, 889, 1174, 1177, 1207, 1219, 1393, 1465, 1501, 1649, 1687, 1915, 1942, 2101, 2159, 2201, 2359, 2899, 2902, 2995, 3007, 3143, 3383, 3401, 3427, 3937, 4039, 4054, 4097, 4315, 4529, 4537, 4702, 4741, 5029, 5065, 5398, 5587
Offset: 1

Views

Author

Antonio Roldán, Mar 16 2015

Keywords

Comments

This sequence is the intersection of A006881 and A006532.

Examples

			199 is in the sequence because 119=7*17 (the product of two distinct primes) and sigma(119)=8*18=144=12^2 (a square number).
		

Crossrefs

Programs

  • Haskell
    a256152 n = a256152_list !! (n-1)
    256152_list = filter f a006881_list where
       f x = a010052' ((spf + 1) * (x `div` spf + 1)) == 1
             where spf = a020639 x
    -- Reinhard Zumkeller, Apr 06 2015
  • Mathematica
    f[n_] := Block[{pf = FactorInteger@ n}, Max @@ Last /@ pf == 1 && Length@ pf == 2]; Select[Range@ 6000, IntegerQ@ Sqrt@ DivisorSigma[1, #] && f@ # &] (* Michael De Vlieger, Mar 17 2015 *)
  • PARI
    {for(i=1,10^4,if(omega(i)==2&&issquarefree(i)&&issquare(sigma(i)),print1(i,", ")))}
    

A291167 Numbers k such that psi(k) is a perfect square where psi(k) = A001615(k).

Original entry on oeis.org

1, 3, 18, 20, 22, 27, 60, 66, 70, 72, 80, 88, 92, 94, 99, 115, 119, 162, 170, 210, 212, 214, 217, 240, 243, 252, 264, 265, 276, 280, 282, 288, 308, 310, 315, 320, 322, 345, 352, 357, 368, 376, 382, 385, 423, 497, 500, 510, 517, 527, 540, 594, 596, 612, 636, 637, 642, 648, 651, 679, 680, 710, 725, 742
Offset: 1

Views

Author

Altug Alkan, Aug 19 2017

Keywords

Comments

The product of an even number of distinct members of A066436 is in the sequence. - Robert Israel, Aug 22 2017

Examples

			60 is a term because psi(60) = 144 is a perfect square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) issqr(n*mul(1+1/p,p=numtheory:-factorset(n))) end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 22 2017
  • Mathematica
    Select[Range@ 750, IntegerQ@ Sqrt[# Sum[MoebiusMu[d]^2/d, {d, Divisors@ #}]] &] (* Michael De Vlieger, Aug 19 2017 *)
  • PARI
    a001615(n) = n*sumdivmult(n, d, issquarefree(d)/d);
    is(n) = issquare(a001615(n));
Previous Showing 11-20 of 53 results. Next