cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A124753 a(3n+k) = (k+1)*binomial(4n+k, n)/(3n+k+1), where k is n reduced mod 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 9, 15, 22, 52, 91, 140, 340, 612, 969, 2394, 4389, 7084, 17710, 32890, 53820, 135720, 254475, 420732, 1068012, 2017356, 3362260, 8579560, 16301164, 27343888, 70068713, 133767543, 225568798, 580034052, 1111731933, 1882933364, 4855986044, 9338434700
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Comments

Row sums of Riordan array (1,x(1-x^3))^(-1). Also row sums of A124752.
a(n) is the number of ordered trees (A000108) with n vertices in which every non-leaf non-root vertex has exactly two children that are leaves. For example, a(4) counts the 2 trees
\ /
| and \|/ . - David Callan, Aug 22 2014

Crossrefs

Cf. A084080, A002293, A069271 (trisection), A006632 (trisection).

Programs

  • Maple
    A124753 := proc(n)
        local k,np;
        k := modp(n,3) ;
        np := floor(n/3) ;
        (k+1)*binomial(np+n,np)/(n+1) ;
    end proc:
    seq(A124753(n),n=0..40) ; # R. J. Mathar, Oct 30 2014
  • Mathematica
    a[n_] := Module[{q, k}, {q, k} = QuotientRemainder[n, 3]; (k+1)*Binomial[4q + k, q]/(3q + k + 1)];
    Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Nov 20 2017 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1,n,A=1+x*A*exp(sum(m=1,n\3,3*polcoeff(log(A+x*O(x^n)),3*m)*x^(3*m))+x*O(x^n))); polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
    
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\3, 4, n%3+1); \\ Seiichi Manyama, Jul 20 2025

Formula

a(3n) = A002293(n), a(3n+1) = A069271(n), a(3n+2) = A006632(n+1).
a(n) = ((mod(n,3)+1)*C(4*floor(n/3)+mod(n,3), floor(n/3))/ (3*floor(n/3) + 1 + mod(n, 3))). - Paul Barry, Dec 14 2006
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(w*x)*A(w^2*x), where w = exp(2*Pi*I/3). - Paul D. Hanna, Jun 04 2012
G.f. satisfies: A(x) = 1 + x*A(x)*G(x^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. - Paul D. Hanna, Jun 04 2012
Conjecture: +8019*n*(n-1)*(n+1)*a(n) +17496*n*(n-1)*(n-3)*a(n-1) +2592*(3*n-5)*(n-1)*(3*n-16)*a(n-2) +216*(-224*n^3+48*n^2+3926*n-6331)*a(n-3) +576*(-288*n^3+2448*n^2-6558*n+5443)*a(n-4) +768*(-288*n^3+3600*n^2-14878*n+20375)*a(n-5) -8192*(4*n-23)*(2*n-11)*(4*n-21)*a(n-6)=0. - R. J. Mathar, Oct 30 2014
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} a(3*k) * a(n-1-3*k). - Seiichi Manyama, Jul 07 2025

A006634 a(n) = 3*binomial(4*n+8, n)/(n+3).

Original entry on oeis.org

1, 9, 72, 570, 4554, 36855, 302064, 2504304, 20974005, 177232627, 1509395976, 12943656180, 111676661460, 968786892675, 8445123522144, 73940567860896, 649942898236596, 5733561315124260, 50744886833898400, 450461491952952690, 4009721145437152530, 35782256673785401065
Offset: 0

Views

Author

Keywords

Comments

Former name: From generalized Catalan numbers.

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A006634:= func< n | 3*Binomial(4*n+8,n)/(n+3) >;
    [A006634(n): n in [0..40]]; // G. C. Greubel, Sep 01 2025
    
  • Maple
    series(RootOf(g = 1+x*g^4,g)^9, x=0, 30); # Mark van Hoeij, Apr 22 2013
  • Mathematica
    f[x_] := HypergeometricPFQ[ {9/4, 5/2, 11/4, 3}, {10/3, 11/3, 4}, 256/27*x]; Series[f[x], {x, 0, 16}] // CoefficientList[#, x]& (* Jean-François Alcover, Apr 23 2013, after Simon Plouffe *)
    Table[3*Binomial[4*n+8,n]/(n+3), {n,0,40}] (* G. C. Greubel, Sep 01 2025 *)
  • PARI
    N = 3*66;  x = 'x + O('x^N);
    g=serreverse(x-x^4)/x;
    gf=g^9;  v=Vec(gf);
    vector(#v\3,n,v[3*n-2])
    /* Joerg Arndt, Apr 23 2013 */
    
  • SageMath
    def A006634(n): return 3*binomial(4*(n+2),n)//(n+3)
    print([A006634(n) for n in range(41)]) # G. C. Greubel, Sep 01 2025

Formula

G.f.: hypergeom([9/4, 5/2, 11/4, 3], [10/3, 11/3, 4], 256/27*x). - Simon Plouffe, Master's Thesis, UQAM, 1992
G.f.: g^9 where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Apr 22 2013
From G. C. Greubel, Sep 01 2025: (Start)
a(n) = 3*binomial(4*n+8, n)/(n+3).
E.g.f.: hypergeom([9/4, 5/2, 11/4, 3], [1, 10/3, 11/3, 4], 256*x/27). (End)

Extensions

More terms from Joerg Arndt, Apr 23 2013
New name by G. C. Greubel, Sep 01 2025

A006633 Expansion of hypergeom([3/2, 7/4, 2, 9/4], [7/3, 8/3, 3], (256/27)*x).

Original entry on oeis.org

1, 6, 39, 272, 1995, 15180, 118755, 949344, 7721604, 63698830, 531697881, 4482448656, 38111876530, 326439471960, 2814095259675, 24397023508416, 212579132600076, 1860620845932216, 16351267454243260, 144222309948974400, 1276307560533365955, 11329053395044653180
Offset: 0

Views

Author

Keywords

Comments

From generalized Catalan numbers.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    gf := hypergeom([3/2, 7/4, 2, 9/4], [7/3, 8/3, 3], (256/27)*x):
    ser := series(gf, x, 22): seq(coeff(ser, x, n), n = 0..21); # Peter Luschny, Feb 22 2024
  • Mathematica
    A006633[n_] := 2*Binomial[4*n+5, n]/(n+2);
    Array[A006633, 25, 0] (* Paolo Xausa, Feb 25 2024 *)

Formula

O.g.f.: hypergeom_4F3([3/2, 7/4, 2, 9/4], [7/3, 8/3, 3], (256/27)*x). - Simon Plouffe, Master's Thesis, UQAM 1992
a(n) = 2*binomial(4*n + 5, n) / (n+2). - Bruno Berselli, Jan 18 2014
a(n) = (n+1) * A000260(n+1). - F. Chapoton, Feb 22 2024

Extensions

New name by using a formula from the author by Peter Luschny, Feb 24 2024

A370057 a(n) = 3*(4*n+2)!/(3*n+3)!.

Original entry on oeis.org

1, 3, 30, 546, 14688, 526680, 23680800, 1282554000, 81339793920, 5915366392320, 485415660038400, 44376781223174400, 4473125162795520000, 492902545595556096000, 58949616073242166272000, 7605168496387089788160000, 1052810955815818170875904000
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(3(4n+2)!)/(3n+3)!,{n,0,20}] (* Harvey P. Dale, Feb 15 2025 *)
  • PARI
    a(n) = 3*(4*n+2)!/(3*n+3)!;

Formula

E.g.f.: exp( 3/4 * Sum_{k>=1} binomial(4*k,k) * x^k/k ).
a(n) = A000142(n) * A006632(n+1).
D-finite with recurrence 3*(3*n+2)*(3*n+1)*(n+1)*a(n) -8*n*(4*n+1)*(2*n+1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Feb 22 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x))^3.
a(n) = 3 * Sum_{k=0..n} (3*n+3)^(k-1) * |Stirling1(n,k)|. (End)

A380515 Expansion of e.g.f. exp(x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 7, 109, 2689, 91261, 3950191, 208064137, 12917499169, 923765042809, 74780847503191, 6760168138392901, 675023676995501857, 73787463232202560309, 8763902701210982610559, 1123850728979698205132641, 154757223522414820829369281, 22775744033825102490806751217
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 3*n!*sum(k=0, n-1, binomial(3*n+k, k)/((3*n+k)*(n-k-1)!)));

Formula

a(n) = 3 * n! * Sum_{k=0..n-1} binomial(3*n+k,k)/((3*n+k) * (n-k-1)!) for n > 0.
a(n) = U(1-n, 2-4*n, 1), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 26 2025
E.g.f.: exp( Series_Reversion( x*(1-x)^3 ) ). - Seiichi Manyama, Mar 15 2025

A233658 7*binomial(4*n + 7, n)/(4*n + 7).

Original entry on oeis.org

1, 7, 49, 357, 2695, 20930, 166257, 1344904, 11042724, 91801255, 771201431, 6536904290, 55838330730, 480197194260, 4154140621425, 36126361733616, 315647802951628, 2769544822393356, 24392874398953060, 215582307059144025, 1911286446370861455, 16993580092566979770, 151491588134469616215
Offset: 0

Views

Author

Tim Fulford, Dec 14 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=4, r=7.

Crossrefs

Programs

  • Magma
    [7*Binomial(4*n+7,n)/(4*n+7): n in [0..30]];
  • Mathematica
    Table[7 Binomial[4 n + 7, n]/(4 n + 7), {n, 0, 30}]
  • PARI
    a(n) = 7*binomial(4*n+7,n)/(4*n+7);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/7))^7+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=4, r=7.
D-finite with recurrence 3*(3*n+5)*(3*n+7)*(n+2)*a(n) -(n+1)*(661*n^2+1301*n+558)*a(n-1) +120*(4*n+1)*(2*n+1)*(4*n-1)*a(n-2)=0. - R. J. Mathar, Nov 22 2024
D-finite with recurrence 3*n*(3*n+5)*(3*n+7)*(n+2)*a(n) -8*(4*n+5)*(2*n+3)*(4*n+3)*(n+1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A233667 a(n) = 5*binomial(4*n+10,n)/(2*n+5).

Original entry on oeis.org

1, 10, 85, 700, 5750, 47502, 395560, 3321120, 28102425, 239503550, 2054455634, 17726454200, 153757722300, 1340045361750, 11729338225200, 103068670351552, 908923976461140, 8041606944709800, 71359997110169625, 634978885837495500, 5664526697522326590
Offset: 0

Views

Author

Tim Fulford, Dec 14 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=4, r=10.

Crossrefs

Programs

  • Magma
    [5*Binomial(4*n+10,n)/(2*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[4 n + 10, n]/(2 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(4*n+10,n)/(2*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(2/5))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=4, r=10.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 4F4(5/2,11/4,3,13/4; 1,11/3,4,13/3; 256*x/27).
a(n) ~ 5*2^(8*n+39/2)/(sqrt(Pi)*3^(3*n+21/2)*n^(3/2)). (End)

A371483 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1-x))^3.

Original entry on oeis.org

1, 3, 18, 124, 933, 7446, 61943, 531348, 4666425, 41751325, 379230711, 3487769871, 32414437521, 303950138604, 2872137458010, 27322233357964, 261446381792670, 2514851398148595, 24303030755342128, 235841264063844258, 2297278004837062317
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n-1, n-k)*binomial(4*k+2, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(4*k+2,k)/(k+1).
G.f.: A(x) = B(x/(1-x)), where B(x) = (1/x) * Series_Reversion( x*(1-x)^3 ).
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A349331.

A386565 a(n) = Sum_{k=0..n-1} binomial(4*k-1,k) * binomial(4*n-4*k,n-k-1).

Original entry on oeis.org

0, 1, 11, 111, 1091, 10596, 102237, 982458, 9415539, 90063180, 860278156, 8208539351, 78258171957, 745595635084, 7099714918062, 67574576298276, 642927956583123, 6115089154367484, 58146652079312580, 552769690436583532, 5253812277363417836, 49925987913040522128
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2025

Keywords

Examples

			(1/3) * log( Sum_{k>=0} binomial(4*k-1,k)*x^k ) = x + 11*x^2/2 + 37*x^3 + 1091*x^4/4 + 10596*x^5/5 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(4*k-1, k)*binomial(4*n-4*k, n-k-1));
    
  • PARI
    my(N=30, x='x+O('x^N), g=sum(k=0, N, binomial(4*k, k)/(3*k+1)*x^k)); concat(0, Vec(g*(g-1)/(4-3*g)^2))

Formula

G.f.: g*(g-1)/(4-3*g)^2 where g=1+x*g^4.
G.f.: g/(1-4*g)^2 where g*(1-g)^3 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/3) * log( Sum_{k>=0} binomial(4*k-1,k)*x^k ).
a(n) = Sum_{k=0..n-1} binomial(4*k-1+l,k) * binomial(4*n-4*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(4*n,k).
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(3*n+k,k).

A233666 a(n) = 2*binomial(4*n + 8, n)/(n + 2).

Original entry on oeis.org

1, 8, 60, 456, 3542, 28080, 226548, 1855040, 15380937, 128896456, 1090119316, 9292881360, 79769043900, 688915123680, 5981962494852, 52193342019456, 457367224685012, 4023551800087200, 35521420783728880, 314608026125871720, 2794654131668318430
Offset: 0

Views

Author

Tim Fulford, Dec 14 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=4, r=8.

Crossrefs

Programs

  • Magma
    [2*Binomial(4*n+8,n)/(n+2): n in [0..30]]; // Vincenzo Librandi, Dec 14 2013
  • Mathematica
    Table[2/(n + 2) Binomial[4 n + 8, n], {n, 0, 40}] (* Vincenzo Librandi, Dec 14 2013 *)
  • PARI
    a(n) = 4*binomial(4*n+8,n)/(n+2);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(1/2))^8+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=4, r=8.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 4F4(2,9/4,5/2,11/4; 1,3,10/3,11/3; 256*x/27).
a(n) ~ 2^(8*n+35/2)/(sqrt(Pi)*3^(3*n+17/2)*n^(3/2)). (End)
D-finite with recurrence 3*(3*n+7)*(n+2)*(3*n+8)*a(n) -2*(n+1)*(317*n^2+954*n+709)*a(n-1) +112*(4*n+1)*(2*n+1)*(4*n+3)*a(n-2)=0. - R. J. Mathar, Nov 22 2024
Previous Showing 11-20 of 45 results. Next