cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 321 results. Next

A014263 Numbers that contain even digits only.

Original entry on oeis.org

0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 60, 62, 64, 66, 68, 80, 82, 84, 86, 88, 200, 202, 204, 206, 208, 220, 222, 224, 226, 228, 240, 242, 244, 246, 248, 260, 262, 264, 266, 268, 280, 282, 284, 286, 288, 400, 402, 404, 406, 408, 420, 422, 424
Offset: 1

Views

Author

Keywords

Comments

The set of real numbers between 0 and 1 that contain no odd digits in their decimal expansion has Hausdorff dimension log 5 / log 10.
Integers written in base 5 and then doubled (in base 10). - Franklin T. Adams-Watters, Mar 15 2006
The carryless mod 10 "even" numbers (cf. A004529) sorted and duplicates removed. - N. J. A. Sloane, Aug 03 2010.
Complement of A007957; A196564(a(n)) = 0; A103181(a(n)) = 0. - Reinhard Zumkeller, Oct 04 2011
If n-1 is represented as a base-5 number (see A007091) according to n-1 = d(m)d(m-1)…d(3)d(2)d(1)d(0) then a(n)= Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,2,4,6,8 for k=0..4. - Hieronymus Fischer, Jun 03 2012

Examples

			a(1000) = 24888.
a(10^4) = 60888.
a(10^5) = 22288888.
a(10^6) = 446888888.
		

References

  • K. J. Falconer, The Geometry of Fractal Sets, Cambridge, 1985; p. 19.

Crossrefs

Programs

  • Haskell
    a014263 n = a014263_list !! (n-1)
    a014263_list = filter (all (`elem` "02468") . show) [0,2..]
    -- Reinhard Zumkeller, Jul 05 2011
    
  • Magma
    [n: n in [0..424] | Set(Intseq(n)) subset [0..8 by 2]];  // Bruno Berselli, Jul 19 2011
    
  • Maple
    a:= proc(m) local L,i;
      L:= convert(m-1,base,5);
      2*add(L[i]*10^(i-1),i=1..nops(L))
    end proc:
    seq(a(i),i=1..100); # Robert Israel, Apr 07 2016
  • Mathematica
    Select[Range[450], And@@EvenQ[IntegerDigits[#]]&] (* Harvey P. Dale, Jan 30 2011 *)
    FromDigits/@Tuples[{0,2,4,6,8},3] (* Harvey P. Dale, Jul 07 2025 *)
  • PARI
    a(n) = 2*fromdigits(digits(n-1, 5), 10); \\ Michel Marcus, Nov 04 2022
    
  • PARI
    is(n)=#setminus(Set(digits(n)), [0,2,4,6,8])==0 \\ Charles R Greathouse IV, Mar 03 2025
  • Python
    from sympy.ntheory.digits import digits
    def a(n): return int(''.join(str(2*d) for d in digits(n, 5)[1:]))
    print([a(n) for n in range(58)]) # Michael S. Branicky, Jan 13 2022
    
  • Python
    from itertools import count, islice, product
    def agen(): # generator of terms
        yield 0
        for d in count(1):
            for first in "2468":
                for rest in product("02468", repeat=d-1):
                    yield int(first + "".join(rest))
    print(list(islice(agen(), 58))) # Michael S. Branicky, Jan 13 2022
    

Formula

A045888(a(n)) = 0. - Reinhard Zumkeller, Aug 25 2009
a(n) = A179082(n) for n <= 25. - Reinhard Zumkeller, Jun 28 2010
From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = ((2*b_m(n)) mod 8 + 2)*10^m + Sum_{j=0..m-1} ((2*b_j(n)) mod 10)*10^j, where n>1, b_j(n) = floor((n-1-5^m)/5^j), m = floor(log_5(n-1)).
a(1*5^n+1) = 2*10^n.
a(2*5^n+1) = 4*10^n.
a(3*5^n+1) = 6*10^n.
a(4*5^n+1) = 8*10^n.
a(n) = 2*10^log_5(n-1) for n=5^k+1,
a(n) < 2*10^log_5(n-1), else.
a(n) > (8/9)*10^log_5(n-1) n>1.
a(n) = 2*A007091(n-1), iff the digits of A007091(n-1) are 0 or 1.
G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^5^j *(1-x^5^j)* (2+4x^5^j+ 6(x^2)^5^j+ 8(x^3)^5^j)/(1-x^5^(j+1)).
Also: g(x) = 2*(x/(1-x))*Sum_{j>=0} 10^j*x^5^j * (1-4x^(3*5^j)+3x^(4*5^j))/((1-x^5^j)(1-x^5^(j+1))).
Also: g(x) = 2*(x/(1-x))*(h_(5,1)(x) + h_(5,2)(x) + h_(5,3)(x) + h_(5,4)(x) - 4*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j>=0} 10^j*(x^5^j)^k/(1-(x^5^j)^5). (End)
a(5*n+i-4) = 10*a(n) + 2*i for n >= 1, i=0..4. - Robert Israel, Apr 07 2016
Sum_{n>=2} 1/a(n) = A194182. - Bernard Schott, Jan 13 2022

Extensions

Examples and crossrefs added by Hieronymus Fischer, Jun 06 2012

A002278 a(n) = 4*(10^n - 1)/9.

Original entry on oeis.org

0, 4, 44, 444, 4444, 44444, 444444, 4444444, 44444444, 444444444, 4444444444, 44444444444, 444444444444, 4444444444444, 44444444444444, 444444444444444, 4444444444444444, 44444444444444444, 444444444444444444, 4444444444444444444, 44444444444444444444, 444444444444444444444
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A075415(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 4*10^(n-1) with a(0)=0;
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=4. (End)
G.f.: 4*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: 4*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
a(n) = A007091(A024049(n)). - Michel Marcus, Jun 16 2024
From Elmo R. Oliveira, Jul 19 2025: (Start)
a(n) = 4*A002275(n).
a(n) = A010785(A017209(n-1)) for n >= 1. (End)

A001744 Numbers n such that every digit contains a loop (version 2).

Original entry on oeis.org

0, 4, 6, 8, 9, 40, 44, 46, 48, 49, 60, 64, 66, 68, 69, 80, 84, 86, 88, 89, 90, 94, 96, 98, 99, 400, 404, 406, 408, 409, 440, 444, 446, 448, 449, 460, 464, 466, 468, 469, 480, 484, 486, 488, 489, 490, 494, 496, 498, 499, 600, 604, 606, 608, 609, 640, 644, 646
Offset: 1

Views

Author

Keywords

Comments

See A001743 for the other version.
If n-1 is represented as a base-5 number (see A007091) according to n-1 = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,4,6,8,9 for k=0..4. - Hieronymus Fischer, May 30 2012

Examples

			a(1000) = 46999.
a(10^4) = 809999.
a(10^5) = 44499999.
a(10^6) = 668999999.
		

Crossrefs

Programs

  • Mathematica
    FromDigits/@Tuples[{0,4,6,8,9},3] (* Harvey P. Dale, Aug 16 2018 *)
  • PARI
    is(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 5, 7])==0 \\ Felix Fröhlich, Sep 09 2019

Formula

From Hieronymus Fischer, May 30 2012: (Start)
a(n) = ((2*b_m(n)) mod 8 + 4 + floor(b_m(n)/4) - floor((b_m(n)+1)/4))*10^m + sum_{j=0..m-1} ((2*b_j(n))) mod 10 + 2*floor((b_j(n)+4)/5) - floor((b_j(n)+1)/5) -floor(b_j(n)/5)))*10^j, where n>1, b_j(n)) = floor((n-1-5^m)/5^j), m = floor(log_5(n-1)).
a(1*5^n+1) = 4*10^n.
a(2*5^n+1) = 6*10^n.
a(3*5^n+1) = 8*10^n.
a(4*5^n+1) = 9*10^n.
a(n) = 4*10^log_5(n-1) for n=5^k+1,
a(n) < 4*10^log_5(n-1), otherwise.
a(n) > 10^log_5(n-1) n>1.
a(n) = 4*A007091(n-1), iff the digits of A007091(n-1) are 0 or 1.
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^5^j*(1-x^5^j)*(4 + 6x^5^j + 8(x^2)^5^j + 9(x^3)^5^j)/(1-x^5^(j+1)).
Also: g(x) = (x/(1-x))*(4*h_(5,1)(x) + 2*h_(5,2)(x) + 2*h_(5,3)(x) + h_(5,4)(x) - 9*h_(5,5)(x)), where h_(5,k)(x) = sum_{j>=0} 10^j*(x^5^j)^k/(1-(x^5^j)^5). (End)

Extensions

Ambiguous comment deleted by Zak Seidov, May 25 2010
Examples added by Hieronymus Fischer, May 30 2012

A031235 Triangle T(n,k): write n in base 5, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 4, 2, 1, 0
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A030567, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.
Cf. A007091.

Programs

  • Haskell
    a031235 n k = a031235_tabf !! n !! k
    a031235_row n = a031235_tabf !! n
    a031235_tabf = iterate succ [0] where
       succ []     = [1]
       succ (4:ts) = 0 : succ ts
       succ (t:ts) = (t + 1) : ts
    -- Reinhard Zumkeller, Sep 18 2015
  • Mathematica
    Reverse[IntegerDigits[#,5]]&/@Range[0,40]//Flatten (* Harvey P. Dale, Aug 02 2016 *)
  • PARI
    A031235(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\5^k%5 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... - M. F. Hasler, Jul 21 2013
    

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A029988 Numbers k such that k^2 is palindromic in base 5.

Original entry on oeis.org

0, 1, 2, 6, 26, 31, 66, 126, 156, 626, 651, 756, 804, 3126, 3276, 3756, 9054, 15626, 15751, 16276, 18434, 18756, 32578, 34162, 46704, 78126, 78876, 81276, 93756, 390626, 391251, 393876, 406276, 468756, 487981, 1166454, 1953126, 1956876
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    pal5Q[n_]:=Module[{idn5=IntegerDigits[n^2,5]},idn5==Reverse[idn5]]; Select[ Range[ 0,2*10^6],pal5Q] (* Harvey P. Dale, Feb 02 2023 *)

A073786 Numbers in base -5.

Original entry on oeis.org

0, 1, 2, 3, 4, 140, 141, 142, 143, 144, 130, 131, 132, 133, 134, 120, 121, 122, 123, 124, 110, 111, 112, 113, 114, 100, 101, 102, 103, 104, 240, 241, 242, 243, 244, 230, 231, 232, 233, 234, 220, 221, 222, 223, 224, 210, 211, 212, 213, 214, 200, 201, 202, 203
Offset: 0

Views

Author

Robert G. Wilson v, Aug 11 2002

Keywords

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.

Crossrefs

Programs

  • Mathematica
    ToNegaBases[i_Integer, b_Integer] := FromDigits[ Rest[ Reverse[ Mod[ NestWhileList[(#1 - Mod[ #1, b])/-b &, i, #1 != 0 &], b]]]]; Table[ ToNegaBases[n, 5], {n, 0, 55}]
  • Python
    def A073786(n):
        s, q = '', n
        while q >= 5 or q < 0:
            q, r = divmod(q, -5)
            if r < 0:
                q += 1
                r += 5
            s += str(r)
        return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 09 2016

A102491 Numbers whose base-20 representation can be written with decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 120, 121, 122, 123, 124, 125, 126
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

Comments

a(n) = A118761(n) for n<=50. - Reinhard Zumkeller, May 01 2006

Crossrefs

Complement of A102492; Cf. A102487, A102489, A102493. Cf. A037454, A037462, A007091.

Programs

  • Haskell
    import Data.List (unfoldr)
    a102491 n = a102491_list !! (n-1)
    a102491_list = filter (all (<= 9) . unfoldr
       (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 20)) [0..]
    -- Reinhard Zumkeller, Jun 27 2013
    
  • Maple
    seq(n + (1/2)*add(20^k*floor(n/10^k), k = 1..floor(ln(n)/ln(10))), n = 1..100); # Peter Bala, Dec 01 2016
  • Mathematica
    Select[Range@ 126, Total@ Take[Most@ DigitCount[#, 20], -10] == 0 &] (* Michael De Vlieger, Apr 09 2016 *)
  • PARI
    isok(n) = (n==0) || ((d=digits(n, 20)) && (vecmax(d) < 10)); \\ Michel Marcus, Apr 09 2016
    
  • PARI
    a(n) = fromdigits(digits(n-1),20) \\ Ruud H.G. van Tol, Dec 08 2022
  • Python
    A102491_list = [int(str(x), 20) for x in range(10**6)] # Chai Wah Wu, Apr 09 2016
    

Formula

From Peter Bala, Dec 01 2016: (Start)
If n = Sum_{i = 0..m} d(i)*10^i is the decimal expansion of n then a(n+1) = Sum_{i = 0..m} d(i)*20^i.
a(n+1) = n + 1/2*Sum_{k >= 1} 20^k*floor(n/10^k). Cf. A037454, A037462 and A007091.
a(1) = 0; a(n+1) = 20*a(n/10+1) if n == 0 (mod 10) else a(n+1) = a(n) + 1. (End)
G.f. g(x) satisfies g(x) = 20*Sum_{1<=k<=9} x^k*g(x^10)/x^9 + Sum_{1<=k<=9} k*x^(k+1)/(1-x^10). - Robert Israel, Dec 01 2016

A037453 Positive numbers whose base-5 representation contains no 3 or 4.

Original entry on oeis.org

1, 2, 5, 6, 7, 10, 11, 12, 25, 26, 27, 30, 31, 32, 35, 36, 37, 50, 51, 52, 55, 56, 57, 60, 61, 62, 125, 126, 127, 130, 131, 132, 135, 136, 137, 150, 151, 152, 155, 156, 157, 160, 161, 162, 175, 176, 177, 180, 181, 182, 185, 186, 187
Offset: 1

Views

Author

Keywords

Comments

5 divides neither C(2s-1,s) = A001700(s) (nor C(2s,s) = A000984(s), central column of Pascal's Triangle) if and only if s is one of the terms in this sequence.
k such that binomial(2k,k) != 0 (mod 10). - Benoit Cloitre, Aug 18 2002
Let us recall the plan of Apery's irrationality proof. Consider the recurrence (n+1)^3 * u_(n+1) = (34n^3 + 51n^2 + 27n + 5)u_n - n^3 * u_(n-1). The solution with starting values u_0 = 1; u_1 = 5 has the peculiar property that it has integral terms, despite the fact that at every recursion step we divide by (n+1)^3. The n-th term is given by f(n) = Sum_{i=0..n} binomial(n+i,i)^2 * binomial(n,i)^2 = A005259(n) (see Beukers link) and m such that f(m) mod 5 <> 0 equals 2*a(m). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 08 2004
Numbers k such that A208279(k) <> 0. A073095 is a subsequence. - Chai Wah Wu, Dec 08 2023

Examples

			From _David A. Corneth_, Dec 23 2023: (Start)
27_10 = 102_5 is a term since its base-5 representation contains no 3 and no 4.
28_10 = 103_5 is not a term since its base-5 representation contains a 3.
(End)
		

Crossrefs

Programs

  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 3)
            r += b * q
            b *= 5
        end
    r end; [a(n) for n in 1:53] |> println # Peter Luschny, Jan 03 2021
    
  • Maple
    a:= proc(t) option remember; 5*procname(floor(t/3))+ (t mod 3) end proc:
    a(0):= 0:
    seq(a(n),n=1..100); # Robert Israel, Sep 02 2014
  • Mathematica
    Table[FromDigits[IntegerDigits[k,3],5], {k,60}] (* T. D. Noe, Apr 18 2007 *)
    Rest[FromDigits[#,5]&/@Tuples[{0,1,2},4]] (* Harvey P. Dale, Aug 31 2016 *)
    Select[Range[187], !Divisible[Binomial[2#, #], 10]&] (* Stefano Spezia, Dec 09 2023 *)
  • PARI
    f(n)=sum(i=0,n,binomial(n+i,i)^2*binomial(n,i)^2); for (i=1,1000,if(Mod(f(i),5)<>0,print1(i/2,",")))
    
  • PARI
    isok(k) = binomial(2*k, k) % 10; \\ Michel Marcus, Dec 08 2023
    
  • PARI
    is(n) = my(s = Set(digits(n, 5))); s[#s] < 3 \\ David A. Corneth, Dec 23 2023
    
  • PARI
    a(n) = fromdigits(digits(n, 3), 5) \\ David A. Corneth, Dec 23 2023
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.factor_ import digits
    def A037453_gen(startvalue=1): # generator of terms >= startvalue
        if startvalue <= 0: yield 0
        yield from filter(lambda n: all(x<3 for x in digits(n, 5)[1:]), count(max(startvalue, 1)))
    A037453_list = list(islice(A037453_gen(), 30)) # Chai Wah Wu, Dec 08 2023
    
  • Python
    from gmpy2 import digits
    def A037453(n): return int(digits(n,3),5) # Chai Wah Wu, Aug 10 2025

Formula

a(3n)=5a(n), a(3n+1)=5a(n)+1, a(3n+2)=5a(n)+2, where by definition a(0)=0. - Emeric Deutsch, Mar 23 2004
G.f. satisfies g(x) = 5*(1+x+x^2)*g(x^3) + (x + 2*x^2)/(1-x^3). - Robert Israel, Sep 02 2014

Extensions

Better definition from T. D. Noe, Apr 18 2007

A073792 Replace 5^k with (-5)^k in base 5 expansion of n.

Original entry on oeis.org

0, 1, 2, 3, 4, -5, -4, -3, -2, -1, -10, -9, -8, -7, -6, -15, -14, -13, -12, -11, -20, -19, -18, -17, -16, 25, 26, 27, 28, 29, 20, 21, 22, 23, 24, 15, 16, 17, 18, 19, 10, 11, 12, 13, 14, 5, 6, 7, 8, 9, 50, 51, 52, 53, 54, 45, 46, 47, 48, 49, 40, 41, 42, 43, 44, 35, 36, 37, 38, 39, 30, 31, 32, 33, 34
Offset: 0

Views

Author

Robert G. Wilson v, Aug 12 2002

Keywords

Comments

Base 5 representation for n converted from base -5 to base 10.

Crossrefs

Programs

  • Mathematica
    f[n_Integer, b_Integer] := Block[{l = IntegerDigits[n]}, Sum[l[[ -i]]*(-b)^(i - 1), {i, 1, Length[l]}]]; a = Table[ FromDigits[ IntegerDigits[n, 5]], {n, 0, 80}]; b = {}; Do[b = Append[b, f[a[[n]], 5]], {n, 1, 80}]; b

Formula

a(5*k+m) = -5*a(k)+m for 0 <= m < 5. - Chai Wah Wu, Jan 16 2020

A346689 Replace 5^k with (-1)^k in base-5 expansion of n.

Original entry on oeis.org

0, 1, 2, 3, 4, -1, 0, 1, 2, 3, -2, -1, 0, 1, 2, -3, -2, -1, 0, 1, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, -1, 0, 1, 2, 3, -2, -1, 0, 1, 2, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, -1, 0, 1, 2, 3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2021

Keywords

Comments

If n has base-5 expansion abc..xyz with least significant digit z, a(n) = z - y + x - w + ...

Examples

			48 = 143_5, 3 - 4 + 1 = 0, so a(48) = 0.
		

Crossrefs

Programs

  • Mathematica
    nmax = 104; A[] = 0; Do[A[x] = x (1 + 2 x + 3 x^2 + 4 x^3)/(1 - x^5) - (1 + x + x^2 + x^3 + x^4) A[x^5] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[n + 6 Sum[(-1)^k Floor[n/5^k], {k, 1, Floor[Log[5, n]]}], {n, 0, 104}]
  • Python
    from sympy.ntheory.digits import digits
    def a(n):
        return sum(bi*(-1)**k for k, bi in enumerate(digits(n, 5)[1:][::-1]))
    print([a(n) for n in range(105)]) # Michael S. Branicky, Jul 29 2021

Formula

G.f. A(x) satisfies: A(x) = x * (1 + 2*x + 3*x^2 + 4*x^3) / (1 - x^5) - (1 + x + x^2 + x^3 + x^4) * A(x^5).
a(n) = n + 6 * Sum_{k>=1} (-1)^k * floor(n/5^k).
Previous Showing 11-20 of 321 results. Next