cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 214 results. Next

A120806 Positive integers k such that k+d+1 is prime for all divisors d of k.

Original entry on oeis.org

1, 3, 5, 9, 11, 29, 35, 39, 41, 65, 125, 179, 191, 239, 281, 419, 431, 641, 659, 749, 755, 809, 905, 935, 989, 1019, 1031, 1049, 1229, 1289, 1451, 1469, 1481, 1829, 1859, 1931, 2129, 2141, 2339, 2519, 2549, 2969, 3161, 3299, 3329, 3359, 3389, 3539, 3821, 3851
Offset: 1

Views

Author

Walter Kehowski, Jul 06 2006

Keywords

Comments

No a(n) can be even, since a(n)+2 must be prime. If a(n) is a prime, then it is a Sophie Germain twin prime (A045536). The only square is 9. Let the degree of n be the sum of the exponents in its prime factorization. By convention, degree(1)=0. Then every a(n) has degree less than or equal to 3. Let the weight of n be the number of its distinct prime factors. By convention, weight(1)=0. Clearly, w<=d is always true, with d=w only when the number is squarefree. Let [w,d] be the set of all integers with weight w and degree d. Then only the following possibilities occur: 1. [0,0] => a(1)=1. 2. [1,1] => Sophie Germain twin prime: 3, 5, 11, 29, A005384, A045536. 3. [1,2] => a(4)=9 is the only occurrence. 4. [1,3] => 5^3, 71^3 and 303839^3 are the first few cubes, A000578, A120808. 5. [2,2] => 5*7, 3*13 and 5*13 are the first few semiprimes, A001358, A120807. 6. [2,3] => 11*13^2, 61^2*89 and 13^2*12671 are the first few examples, A014612, A054753, A120809. 7. [3,3] => 5*11*17, 5*53*1151, 5*11*42533 are the first few 3-almost primes, A007304, A120810.

Examples

			a(11) = 125 since divisors(125) = {1, 5, 25, 125} and the set of all n+d+1 is {127, 131, 151, 251} and these are all primes.
		

Crossrefs

Programs

  • Maple
    with(numtheory); L:=[1]: for w to 1 do for k from 1 to 12^6 while nops(L)<=1000 do x:=2*k+1; if andmap(isprime,[x+2,2*x+1]) then S:=divisors(x) minus {1,x}; Q:=map(z-> x+z+1, S); if andmap(isprime,Q) then L:=[op(L),x]; print(nops(L),ifactor(x)); fi; fi; od od; L;
  • Mathematica
    q[k_] := AllTrue[Divisors[k], PrimeQ[k + # + 1] &]; Select[Range[5000], q] (* Amiram Eldar, Aug 05 2024 *)
  • PARI
    is(n)=fordiv(n,d,if(!isprime(n+d+1),return(0)));1; \\ Joerg Arndt, Nov 07 2015

A179642 Product of exactly 5 primes, 3 of which are distinct.

Original entry on oeis.org

120, 168, 180, 252, 264, 270, 280, 300, 312, 378, 396, 408, 440, 450, 456, 468, 520, 552, 588, 594, 612, 616, 680, 684, 696, 700, 702, 728, 744, 750, 760, 828, 882, 888, 918, 920, 945, 952, 980, 984, 1026, 1032, 1044, 1064, 1100, 1116, 1128, 1144, 1160
Offset: 1

Views

Author

Keywords

Examples

			120=2^3*3*5, 168=2^3*3*7, 180=2^2*3^2*5, 252=2^2*3^2*7, 264=2^3*3*11, 270=2*3^3*5
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,3} || Sort[Last/@FactorInteger[n]]=={1,2,2}; Select[Range[2000], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\6)^(1/3),forprime(q=2,sqrt(lim\p^3),if(p==q,next);t=p^3*q;forprime(r=q+1,lim\t,if(p==r,next);listput(v,t*r))));forprime(p=2,sqrt(lim\12),forprime(q=p+1,sqrt(lim\p^2\2),t=(p*q)^2;forprime(r=2,lim\t,if(p==r||q==r,next);listput(v,t*r))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 19 2011

A215217 Smaller member of a pair of sphenic twins, consecutive integers, each the product of three distinct primes.

Original entry on oeis.org

230, 285, 429, 434, 609, 645, 741, 805, 902, 969, 986, 1001, 1022, 1065, 1085, 1105, 1130, 1221, 1245, 1265, 1309, 1310, 1334, 1406, 1434, 1442, 1462, 1490, 1505, 1533, 1581, 1598, 1605, 1614, 1634, 1729, 1742, 1833, 1885, 1886, 1946, 2013, 2014, 2054, 2085
Offset: 1

Views

Author

Martin Renner, Aug 06 2012

Keywords

Comments

455 is not a term of the sequence, since 455 = 5*7*13 is sphenic, i.e., the number of distinct prime factors is 3, though 456 = 2^3*3*19 has 3 distinct prime factors but is not sphenic, because the number of prime factors with repetition is 5 > 3.

Crossrefs

Programs

  • Haskell
    twinLow [] = []
    twinLow [_] = []
    twinLow (n : (m : ns))
        | m == n + 1 = n : twinLow (m : ns)
        | otherwise = twinLow (m : ns)
    a215217 n = (twinLow a007304_list) !! (n - 1)
    -- Peter Dolland, May 31 2019
    
  • Maple
    Sphenics:= select(t -> (map(s->s[2],ifactors(t)[2])=[1,1,1]), {$1..10000}):
    Sphenics intersect map(`-`,Sphenics,1); # Robert Israel, Aug 13 2014
  • Mathematica
    Select[Range[2500], (PrimeNu[#] == PrimeOmega[#] == PrimeNu[#+1] == PrimeOmega[#+1] == 3)&] (* Jean-François Alcover, Apr 11 2014 *)
    SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==3,1,0],{n,2500}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 02 2017 *)
  • PARI
    is_a033992(n) = omega(n)==3 && bigomega(n)==3
    is(n) = is_a033992(n) && is_a033992(n+1) \\ Felix Fröhlich, Jun 10 2019

A285508 Numbers with exactly three prime factors, not all distinct.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 125, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 343, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428, 436, 452
Offset: 1

Views

Author

Kalle Siukola, Apr 20 2017

Keywords

Comments

Cubes of primes together with products of a prime and the square of a different prime.
Numbers k for which A001222(k) = 3, but A001221(k) < 3. - Antti Karttunen, Apr 20 2017

Crossrefs

Setwise difference of A014612 and A007304.
Union of A030078 and A054753.

Programs

  • Maple
    N:= 1000: # for terms <= N
    P:= select(isprime, [2,seq(i,i=3..N/4,2)]): nP:= nops(P):
    sort(select(`<=`,[seq(seq(P[i]*P[j]^2,i=1..nP),j=1..nP)],N)); # Robert Israel, Oct 20 2024
  • Mathematica
    Select[Range[452], PrimeOmega[#] == 3 && PrimeNu[#] < 3 &] (* Giovanni Resta, Apr 20 2017 *)
  • PARI
    isA285508(n) = ((omega(n) < 3) && (bigomega(n) == 3));
    n=0; k=1; while(k <= 10000, n=n+1; if(isA285508(n),write("b285508.txt", k, " ", n);k=k+1));
    \\ Antti Karttunen, Apr 20 2017
    
  • Python
    from sympy import primefactors, primeomega
    def omega(n): return len(primefactors(n))
    def bigomega(n): return primeomega(n)
    print([n for n in range(1, 501) if omega(n)<3 and bigomega(n) == 3]) # Indranil Ghosh, Apr 20 2017 and Kalle Siukola, Oct 25 2023
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A285508(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//(k**2))-(a<<1)+primepi(isqrt(x//k))-1 for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 20 2024
  • Scheme
    ;; With my IntSeq-library.
    (define A285508 (MATCHING-POS 1 1 (lambda (n) (and (= 3 (A001222 n)) (< (A001221 n) 3))))) ;; Antti Karttunen, Apr 20 2017
    

A307534 Heinz numbers of strict integer partitions with 3 parts, all of which are odd.

Original entry on oeis.org

110, 170, 230, 310, 374, 410, 470, 506, 590, 670, 682, 730, 782, 830, 902, 935, 970, 1030, 1034, 1054, 1090, 1265, 1270, 1298, 1370, 1394, 1426, 1474, 1490, 1570, 1598, 1606, 1670, 1705, 1790, 1826, 1886, 1910, 1955, 1970, 2006, 2110, 2134, 2162, 2255, 2266
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A001399.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   110: {1,3,5}
   170: {1,3,7}
   230: {1,3,9}
   310: {1,3,11}
   374: {1,5,7}
   410: {1,3,13}
   470: {1,3,15}
   506: {1,5,9}
   590: {1,3,17}
   670: {1,3,19}
   682: {1,5,11}
   730: {1,3,21}
   782: {1,7,9}
   830: {1,3,23}
   902: {1,5,13}
   935: {3,5,7}
   970: {1,3,25}
  1030: {1,3,27}
  1034: {1,5,15}
  1054: {1,7,11}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],SquareFreeQ[#]&&PrimeNu[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot, nextprime
    def A307534(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1) for a,k in filter(lambda x:x[0]&1,enumerate(primerange(2,integer_nthroot(x,3)[0]+1),1)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(nextprime(k)+1,isqrt(x//k)+1),a+2))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 20 2024

A123322 Products of 8 distinct primes (squarefree 8-almost primes).

Original entry on oeis.org

9699690, 11741730, 13123110, 14804790, 15825810, 16546530, 17160990, 17687670, 18888870, 20030010, 20281170, 20930910, 21111090, 21411390, 21637770, 21951930, 23130030, 23393370, 23993970, 24534510, 25555530, 25571910
Offset: 1

Views

Author

Rick L. Shepherd, Sep 25 2006

Keywords

Comments

Intersection of A005117 and A046310.

Examples

			a(1) = 9699690 = 2*3*5*7*11*13*17*19 = A002110(8).
		

Crossrefs

Cf. A001221, A001222, A005117, A046310, A048692, Squarefree k-almost primes: A000040 (k=1), A006881 (k=2), A007304 (k=3), A046386 (k=4), A046387 (k=5), A067885 (k=6), A123321 (k=7), A115343 (k=9).

Programs

  • Maple
    N:= 3*10^7: # to get all terms  <= N
    pmax:= floor(N/mul(ithprime(i),i=1..7)):
    Primes:= select(isprime,[2,seq(i,i=3..pmax,2)]):
    sort(select(`<`,map(convert,combinat:-choose(Primes,8),`*`),N)); # Robert Israel, Dec 18 2018
  • Mathematica
    f8Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1, 1, 1, 1}; lst={};Do[If[f8Q[n], AppendTo[lst, n]], {n, 10!, 11!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
    Take[ Sort[ Times @@@ Subsets[ Prime@ Range@ 15, {8}]], 22] (* Robert G. Wilson v, Dec 18 2018 *)
  • PARI
    is(n)=issquarefree(n)&&omega(n)==8 \\ Charles R Greathouse IV, Feb 01 2017, corrected (following an observation from Zak Seidov) by M. F. Hasler, Dec 19 2018
    
  • PARI
    is(n) = my(f = factor(n)); omega(f) == 8 && bigomega(f) == 8 \\ David A. Corneth, Dec 18 2018
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A123322(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,8)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Extensions

Edited by Robert Israel, Dec 18 2018

A157352 Products (semiprimes) of two distinct safe primes.

Original entry on oeis.org

35, 55, 77, 115, 161, 235, 253, 295, 329, 413, 415, 517, 535, 581, 649, 749, 835, 895, 913, 1081, 1135, 1169, 1177, 1253, 1315, 1357, 1589, 1735, 1795, 1837, 1841, 1909, 1915, 1969, 2335, 2395, 2429, 2461, 2497, 2513, 2515, 2681, 2773, 2815, 2893, 2935
Offset: 1

Views

Author

Keywords

Comments

35=5*7; 5 and 7 are safe primes, 55=5*11; 5 and 11 are safe primes,...

Examples

			a(1) = 35 since 35 = 5 * 7, and (5 - 1)/2 = 2 and (7 - 1)/2 = 3 are both prime, thus 5 and 7 are distinct safe primes.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[Plus@@Last/@FactorInteger[n]==2,a=Length[First/@FactorInteger[n]];If[a==2,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];If[PrimeQ[(c-1)/2]&&PrimeQ[(d-1)/2],AppendTo[lst,n]]]],{n,7!}];lst
    Select[Select[Range@ 3000, PrimeNu@ # == 2 &], Times @@ Map[If[PrimeQ[(# - 1)/2], #, 0] &, Map[First, FactorInteger@ #]] == # &] (* Michael De Vlieger, Feb 28 2016 *)
    Module[{upto=3000,sp},sp=Select[Prime[Range[PrimePi[upto/5]]],PrimeQ[(#-1)/2]&];Select[Union[Times@@@Subsets[sp,{2}]],#<+upto&]] (* Harvey P. Dale, Aug 25 2017 *)

Extensions

Example corrected by Harvey P. Dale, Aug 25 2017

A259349 Numbers n such that n-1, n, and n+1 are all products of 6 distinct primes (i.e. belong to A067885).

Original entry on oeis.org

1990586014, 1994837494, 2129658986, 2341714794, 2428906514, 2963553594, 3297066410, 3353808094, 3373085990, 3623442746, 3659230730, 3809238770, 3967387346, 4058711734, 4144727994, 4196154390, 4502893746, 4555267690, 4653623534
Offset: 1

Views

Author

James G. Merickel, Jun 24 2015

Keywords

Comments

A subsequence of A169834 and A067885.
The rudimentary method employed by the PARI program below reaches the limit of its usefulness here. Contrast it with the method required for A259350, which is over 4.5 orders of magnitude faster than the analog of this (and may still be some distance best).
a(1)=A093550(6) (that sequence's 5th term, with offset 2). The program arbitrarily makes use of this knowledge, but will run (slower) without it.

Examples

			1990586013 = 3*13*29*67*109*241,
1990586014 = 2*23*37*43*59*461, and
1990586015 = 5*11*17*19*89*1259; and no smaller trio of this kind exists, making the middle value a(1).
		

Crossrefs

For products of 1, 2, 3, 4, 5, and 6 distinct primes see A000040, A006881, A007304, A046386, A046387, and A067885, resp.
See A364265 for a closely related sequence. - N. J. A. Sloane, Jul 18 2023

Programs

  • PARI
    {
    \\Program initialized with known a(1).\\
    \\The purpose of vector s and value u\\
    \\is to skip bad values modulo 36.\\
    k=1990586014;s=[4,4,8,8,8,4];u=1;
    while(1,
      if(issquarefree(k),
        if(issquarefree(k-1),
          if(issquarefree(k+1),
            if(omega(k)==6,
              if(omega(k-1)==6,
                if(omega(k+1)==6,
                  print1(k" ")))))));
      k+=s[u];if(u==6,u=1,u++))
    }

Formula

{n: A001221(n-1) = A001221(n) = A001221(n+1) = A001222(n-1) = A001222(n) = A001222(n+1) = 6}. - R. J. Mathar, Jul 18 2023

A343443 If n = Product (p_j^k_j) then a(n) = Product (k_j + 2), with a(1) = 1.

Original entry on oeis.org

1, 3, 3, 4, 3, 9, 3, 5, 4, 9, 3, 12, 3, 9, 9, 6, 3, 12, 3, 12, 9, 9, 3, 15, 4, 9, 5, 12, 3, 27, 3, 7, 9, 9, 9, 16, 3, 9, 9, 15, 3, 27, 3, 12, 12, 9, 3, 18, 4, 12, 9, 12, 3, 15, 9, 15, 9, 9, 3, 36, 3, 9, 12, 8, 9, 27, 3, 12, 9, 27, 3, 20, 3, 9, 12, 12, 9, 27, 3, 18
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 15 2021

Keywords

Comments

Inverse Moebius transform of A056671.
a(n) depends only on the prime signature of n (see formulas). - Bernard Schott, May 03 2021

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((#[[2]] + 2) & /@ FactorInteger[n]); Table[a[n], {n, 80}]
    a[n_] := Sum[If[GCD[d, n/d] == 1, DivisorSigma[0, d], 0], {d, Divisors[n]}]; Table[a[n], {n, 80}]
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)==1, numdiv(d))) \\ Andrew Howroyd, Apr 15 2021
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2)/(1-X)^2)[n], ", ")) \\ Vaclav Kotesovec, Feb 11 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A343443(n): return prod(e+2 for e in factorint(n).values()) # Chai Wah Wu, Feb 21 2025

Formula

a(n) = 2^omega(n) * tau_3(n) / tau(n), where omega = A001221, tau = A000005 and tau_3 = A007425.
a(n) = Sum_{d|n, gcd(d, n/d) = 1} tau(d).
From Bernard Schott, May 03 2021: (Start)
a(p^k) = k+2 for p prime, or signature [k].
a(A006881(n)) = 9 for signature [1, 1].
a(A054753(n)) = 12 for signature [2, 1].
a(A065036(n)) = 15 for signature [3, 1].
a(A085986(n)) = 16 for signature [2, 2].
a(A178739(n)) = 18 for signature [4, 1].
a(A143610(n)) = 20 for signature [3, 2].
a(A007304(n)) = 27 for signature [1, 1, 1]. (End)
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 1/p^s - 1/p^(2*s)). - Vaclav Kotesovec, Feb 11 2023
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = A000005(A064549(n)).
a(n) = A363194(A348018(n)). (End)

A096917 Smallest prime factor of the n-th product of 3 distinct primes.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 5, 3, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 5, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 5, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 3, 2, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 15 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1,1};f1[n_]:=Min[First/@FactorInteger[n]];f2[n_]:=Max[First/@FactorInteger[n]];lst={};Do[If[f[n],AppendTo[lst,f1[n]]],{n,0,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 10 2010 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot, primefactors
    def A096917(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return min(primefactors(bisection(f))) # Chai Wah Wu, Aug 30 2024

Formula

a(n)*A096918(n)*A096919(n) = A007304(n).
a(n) < A096918(n) < A096919(n).
a(n) = A020639(A007304(n)).
Previous Showing 51-60 of 214 results. Next