cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 2117 results. Next

A131056 A007318 * A131055.

Original entry on oeis.org

1, 3, 7, 17, 41, 97, 225, 513, 1153, 2561, 5633, 12289, 26625, 57345, 122881, 262145, 557057, 1179649, 2490369, 5242881, 11010049, 23068673, 48234497, 100663297, 209715201, 436207617, 905969665
Offset: 1

Views

Author

Gary W. Adamson, Jun 12 2007

Keywords

Examples

			a(4) = 17 = (1, 3, 3, 1) dot (1, 2, 2, 4) = (1 + 6 + 6 + 4).
		

Crossrefs

Programs

Formula

Binomial transform of A131055: (1, 2, 2, 4, 4, 6, 6, ...). A131056 = A131054 as an infinite lower triangular matrix * [1,2,3,...] as a vector.
G.f.: x*(1-2*x+2*x^3)/((1-x)*(1-2*x)^2); a(n)=-0^n/2+2^(n-1)*(n+1)+1. - Paul Barry, Jun 14 2008
a(n) = 2+A099035(n-1), n>1. - Juri-Stepan Gerasimov, Oct 02 2011

Extensions

More terms from Paul Barry, Jun 14 2008

A132047 3*A007318 - 2*A103451 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 9, 9, 1, 1, 12, 18, 12, 1, 1, 15, 30, 30, 15, 1, 1, 18, 45, 60, 45, 18, 1, 1, 21, 63, 105, 105, 63, 21, 1, 1, 24, 84, 168, 210, 168, 84, 24, 1, 1, 27, 108, 252, 378, 378, 252, 108, 27, 1, 1, 30, 135, 360, 630, 756, 630, 360, 135, 30, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 08 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 6, 1;
  1, 9, 9, 1;
  1, 12, 18, 12, 1;
  1, 15, 30, 30, 15, 1;
  1, 18, 45, 60, 45, 18, 1;
  ...
		

Crossrefs

Cf. A007318, A103451, A131128 (row sums).

Programs

  • PARI
    T(n, k) = my(bnk = binomial(n, k)); 3*bnk - 2*(bnk==1); \\ Michel Marcus, Jun 16 2022

Formula

a(n) = 3*A007318(n) - 2*A103451(n).
T(n,k) = 3*C(n,k)-2*(C(n,k-n)+C(n,-k)-C(0,n+k)), 0<=k<=n. [Eric Werley, Jul 01 2011]

Extensions

Corrected and extended by Roger L. Bagula, Nov 02 2008

A152845 Triangle read by rows, A007318 rows repeated seven times .

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2008

Keywords

Comments

Diagonal sums : A103375 .

Examples

			Triangle begins : 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1,1 ; 1,1 ; 1,1 ; 1,1 ; 1,1 ; 1,1 ; 1,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,3,3,1 ; ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[#, {7}] & /@ Table[Binomial[n, k], {n, 0, 10}, {k, 0, n}]] (* G. C. Greubel, May 03 2017 *)

A175807 A007318-perfect numbers.

Original entry on oeis.org

2, 3, 4, 5, 12, 22, 26, 154
Offset: 1

Views

Author

Vladimir Shevelev, Dec 05 2010

Keywords

Comments

See definition in comment to A175522. The definition is applied to the flattened view of the binomial coefficients with a single index, without regard to fact that A007318 is a triangle.
No more terms up to 10^6. - Michel Marcus, Feb 07 2016

Examples

			Since A007318(1)+ A007318(2)+ A007318(3)+ A007318(4)+ A007318(6)=6= A007318(12), then 12 is in the sequence.
		

Crossrefs

Programs

  • Maple
    A007318 := proc(n) option remember; local t,r; t := 0 ; for r from 0 do if t+r+1 > n then return binomial(r,n-t) ; end if; t := t+r+1 ; end do: end proc:
    isA175807 := proc(n) m := 0 ; for d in numtheory[divisors](n) minus {n} do m := m+A007318(d) ; end do; m = A007318(n) ; end proc:
    for n from 1 do if isA175807(n) then printf("%d,\n",n); end if; end do: # R. J. Mathar, Dec 05 2010
  • PARI
    b(n) = {my(m = 1); while (m*(m+1)/2 < n, m++); if (! ispolygonal(n, 3), m--); binomial(m, n - m*(m+1)/2);}
    isok(n) = sumdiv(n, d, (dMichel Marcus, Feb 07 2016

A175811 A007318-deficient numbers.

Original entry on oeis.org

1, 7, 11, 13, 17, 18, 19, 23, 24, 25, 29, 30, 31, 32, 33, 37, 38, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 60, 61, 62, 63, 67, 68, 69, 70, 71, 72, 73, 74, 75, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117
Offset: 1

Views

Author

Vladimir Shevelev, Dec 05 2010

Keywords

Comments

Definition see in comment to A175522. The same criticism on index-selection as in A175807 applies. All primes greater than 5 are in the sequence.

Crossrefs

Cf. A007318, A175522, A175807 (perfect version), A005100, A005101.

Programs

  • Maple
    A007318 := proc(n) option remember; local t, r; t := 0 ; for r from 0 do if t+r+1 > n then return binomial(r, n-t) ; end if; t := t+r+1 ; end do: end proc:
    isA175811 := proc(n) m := 0 ; for d in numtheory[divisors](n) minus {n} do m := m+A007318(d) ; end do; m < A007318(n) ; end proc:
    for n from 1 to 120 do if isA175811(n) then printf("%d,", n); end if; end do: # R. J. Mathar, Dec 06 2010
  • PARI
    b(n) = {my(m = 1); while (m*(m+1)/2 < n, m++); if (! ispolygonal(n, 3), m--); binomial(m, n - m*(m+1)/2);}
    isok(n) = sumdiv(n, d, (dMichel Marcus, Feb 07 2016

Formula

{n: sum_{d|n, dA007318(d) < A007318(n)}.

Extensions

Terms >25 from R. J. Mathar, Dec 06 2010

A055375 Euler transform of Pascal's triangle A007318.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 7, 7, 3, 5, 14, 21, 14, 5, 7, 26, 48, 48, 26, 7, 11, 45, 103, 131, 103, 45, 11, 15, 75, 198, 312, 312, 198, 75, 15, 22, 120, 366, 674, 830, 674, 366, 120, 22, 30, 187, 637, 1359, 1961, 1961, 1359, 637, 187, 30, 42, 284, 1078, 2584, 4302, 5066, 4302, 2584, 1078, 284, 42
Offset: 0

Views

Author

Christian G. Bower, May 16 2000

Keywords

Comments

Number of partitions of n objects, k of which are black, into parts each of which is a sequence of objects. E.g. T(3,1) = 7; the partitions are [BWW], [WBW], [WWB], [BW,W], [WB,W], [WW,B] and [B,W,W]. - Franklin T. Adams-Watters, Jan 10 2007

Examples

			Triangle begins
   1;
   1,  1;
   2,  3,   2;
   3,  7,   7,   3;
   5, 14,  21,  14,   5;
   7, 26,  48,  48,  26,   7;
  11, 45, 103, 131, 103,  45, 11;
  15, 75, 198, 312, 312, 198, 75, 15;
  ...
		

Crossrefs

Row sums give A034899.
Columns k=0-1 give: A000041, A014153(n-1) for n>=1.
T(2n,n) gives A360626.

Programs

  • Maple
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    T:= (n, k)-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Feb 14 2023
  • Mathematica
    nmax = 10; pp = Product[Product[1/(1 - x^i*y^j)^Binomial[i, j], {j, 0, i}], {i, 1, nmax}]; t[n_, k_] := SeriesCoefficient[pp, {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 18 2017 *)

Formula

G.f.: Product_{i>=1} Product_{j=0..i} 1/(1 - x^i y^j)^C(i,j). - Franklin T. Adams-Watters, Jan 10 2007
Sum_{k=0..2n} (-1)^k * T(2n,k) = A034691(n). - Alois P. Heinz, Dec 05 2023

A073617 Consider Pascal's triangle A007318; a(n) = product of terms at +45 degrees slope with the horizontal.

Original entry on oeis.org

1, 1, 1, 2, 3, 12, 30, 240, 1050, 16800, 132300, 4233600, 61122600, 3911846400, 104886381600, 13425456844800, 674943865596000, 172785629592576000, 16407885372638760000, 8400837310791045120000, 1515727634953623371280000, 1552105098192510332190720000
Offset: 0

Views

Author

Amarnath Murthy, Aug 07 2002

Keywords

Comments

The sum of the terms pertaining to the above product is the (n+1)-th Fibonacci number: 1 + 5 + 6 + 1 = 13.
n divides A073617(n+1) for n>=1; see the Mathematica section. [Clark Kimberling, Feb 29 2012]

Examples

			For n=6 the diagonal is 1,5,6,1 and product of the terms = 30 hence a(6) = 30.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(binomial(n-i, i), i=0..floor(n/2)):
    seq(a(n), n=0..21);  # Alois P. Heinz, Nov 27 2023
  • Mathematica
    p[n_] := Product[Binomial[n + 1 - k, k], {k, 1, Floor[(n + 1)/2]}]
    Table[p[n], {n, 1, 20}]   (* A073617(n+1) *)
    Table[p[n]/n, {n, 1, 20}] (* A208649 *)
    (* Clark Kimberling, Feb 29 2012 *)
    (* Second program *)
    Join[{1}, Table[If[EvenQ[n], 2^(3/2 - n/4) * Sqrt[BarnesG[n]] * Gamma[n] / (n*BarnesG[n/2]^2 * Gamma[n/2]^(7/2)), Glaisher^3 * 2^((-10 + 3*n + 6*n^2)/12) * BarnesG[n/2]^2 * Gamma[n/2]^(5/2) / (E^(1/4) * Pi^(1/4 + n/2) * Sqrt[BarnesG[n]] * Gamma[n])], {n, 1, 25}]] (* Vaclav Kotesovec, Jun 10 2025 *)

Formula

a(n) = Product_{k=0..floor(n/2)} binomial(n-k,k).
a(2n+1)/a(2n-1) = binomial(2n,n); a(2n)/a(2n-2) = (1/2)*binomial(2n,n); (a(2n+1)*a(2n-2))/(a(2n)*a(2n-1)) = 2. - John Molokach, Sep 09 2013
a(n) ~ A^(3/2) * 2^(n*(n+1)/4 - 1/6 + (-1)^n/4) * exp(n/4 - 1/8) / (n^((n+1)/4 + (-1)^n/8) * Pi^(n/4 + 3/8 + (-1)^n/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jun 10 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 22 2003

A080233 Triangle T(n,k) obtained by taking differences of consecutive pairs of row elements of Pascal's triangle A007318.

Original entry on oeis.org

1, 1, 0, 1, 1, -1, 1, 2, 0, -2, 1, 3, 2, -2, -3, 1, 4, 5, 0, -5, -4, 1, 5, 9, 5, -5, -9, -5, 1, 6, 14, 14, 0, -14, -14, -6, 1, 7, 20, 28, 14, -14, -28, -20, -7, 1, 8, 27, 48, 42, 0, -42, -48, -27, -8, 1, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9
Offset: 0

Views

Author

Paul Barry, Feb 10 2003

Keywords

Comments

Row sums are 1,1,1,1,1,1 with g.f. 1/(1-x). Can also be obtained from triangle A080232 by taking sums of pairs of consecutive row elements.
Mirror image of triangle in A156644. - Philippe Deléham, Feb 14 2009

Examples

			Triangle begins as:
  1;
  1, 0;
  1, 1, -1;
  1, 2,  0, -2;
  1, 3,  2, -2, -3;
  1, 4,  5,  0, -5,  -4;
  1, 5,  9,  5, -5,  -9,  -5;
  1, 6, 14, 14,  0, -14, -14,  -6;
  1, 7, 20, 28, 14, -14, -28, -20,  -7;
  1, 8, 27, 48, 42,   0, -42, -48, -27,  -8;
  1, 9, 35, 75, 90,  42, -42, -90, -75, -35, -9;
  ...
		

Crossrefs

Row sums give A000012.

Programs

  • Mathematica
    Table[Binomial[n, k] - Binomial[n, k - 1], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)
  • PARI
    {T(n, k) = if( n<0 || k>n, 0, binomial(n, k) - binomial(n, k-1))}; /* Michael Somos, Nov 25 2016 */

Formula

T(n, k) = if(k>n, 0, binomial(n, k)-binomial(n, k-1)).

A091044 One half of odd-numbered entries of even-numbered rows of Pascal's triangle A007318.

Original entry on oeis.org

1, 2, 2, 3, 10, 3, 4, 28, 28, 4, 5, 60, 126, 60, 5, 6, 110, 396, 396, 110, 6, 7, 182, 1001, 1716, 1001, 182, 7, 8, 280, 2184, 5720, 5720, 2184, 280, 8, 9, 408, 4284, 15912, 24310, 15912, 4284, 408, 9, 10, 570, 7752, 38760, 83980, 83980, 38760, 7752, 570, 10, 11
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Comments

The odd-numbered columns of this triangle can be reduced: see triangle A091043.
The odd-numbered rows coincide with the ones of the reduced triangle A091043.
binomial(2*n,2*m+1) is even for n >= m + 1 >= 1, hence every T(n,m) is a positive integer.
The GCD (greatest common divisor) of the entries of each odd-numbered row n=2*k+1, k>=0, is 1.
The GCD of the entries of the even-numbered row n=2*k, k>=1, is A006519(n) (highest power of 2 in n=2*k).

Examples

			Triangle begins:
  [1];
  [2,2];
  [3,10,3];
  [4,28,28,4];
  [5,60,126,60,5];
  [6,110,396,396,110,6];
  ...
n = 6 = 2*3: gcd(6,110,396) = 2 = A006519(6);
n = 5: gcd(5,60,126) = 1 = A006519(5).
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Binomial[2n,2m+1]/2,{n,1,11},{m,0,n-1}]] (* Indranil Ghosh, Feb 22 2017 *)
  • PARI
    {A(i, j) = binomial(2*i + 2*j - 2, 2*i - 1) / 2}; /* Michael Somos, Oct 15 2017 */

Formula

T(n, m)= binomial(2*n, 2*m+1)/2, n >= m + 1 >= 1, else 0.
Put a(n) = n!*(n+1/2)!/(1/2)!. T(n+1,k) = (n+1)*a(n)/(a(k)*a(n-k)).
T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1). Cf. A111910. - Peter Bala, Oct 13 2011
From Peter Bala, Jul 29 2013: (Start)
O.g.f.: 1/(1 - 2*t*(x + 1) + t^2*(x - 1)^2)= 1 + (2 + 2*x)*t + (3 + 10*x + 3*x^2)*t^2 + ....
The n-th row polynomial R(n,x) = 1/(4*sqrt(x))*( (1 + sqrt(x))^(2*n) - (sqrt(x) - 1)^(2*n) ) and has n-1 real zeros given by the formula -cot^2(k*Pi/(2*n)) for k = 1,2,...,n-1. Cf A091042.
The row polynomial R(n,x) satisfies (x - 1)^n*R(n,x/(x - 1)) = U(n,2*x - 1), the n-th row polynomial of A053124.
Row sums A000302. Sum {k = 0..n-1} 2^k*T(n,k) = A001109(n). (End)
From Werner Schulte, Jan 13 2017: (Start)
(1) T(n,m) = T(n-1,m) + T(n-1,m-1)*(2*n-1-m)/m for 0 < m < n-1 with T(n,0) = n and T(n,n) = 0;
(2) T(n,m) = 2*T(n-1,m) + 2*T(n-1,m-1) - T(n-2,m) + 2*T(n-2,m-1) - T(n-2,m-2) for 0 < m < n-1 with T(n,0) = T(n,n-1) = n and T(n,m) = 0 if m < 0 or m >= n;
(3) The row polynomials p(n,x) = Sum_{m=0..n-1} T(n,m)*x^m satisfy the recurrence equation p(n+2,x) = (2+2*x)*p(n+1,x) - (x-1)^2*p(n,x) for n >= 1 with initial values p(1,x) = 1 and p(2,x) = 2+2*x.
(End)
G.f.: x*y /(1 - 2*(x+y) + (x-y)^2) with the entries regarded as an infinite square array A(i, j) read by antidiagonals. - Michael Somos, Oct 15 2017

A116672 Triangle read by rows in which the binomial transform of the n-th row gives the Euler transform of the n-th diagonal of Pascal's triangle (A007318).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 7, 1, 1, 10, 27, 29, 12, 1, 1, 14, 57, 96, 72, 21, 1, 1, 21, 117, 277, 319, 176, 38, 1
Offset: 1

Views

Author

Alford Arnold, Feb 22 2006

Keywords

Comments

For example, the Euler transform of 1,3,6,... is 1,1,4,10,26,59,141,... (A000294) differing slightly from A000293 which counts the solid partitions.
The NAME does not reproduce the DATA, COMMENTS, or EXAMPLES. - R. J. Mathar, Jul 19 2017
The binomial transforms of the rows form the rows of A289656. - N. J. A. Sloane, Jul 19 2017

Examples

			Row 6 is 1 10 27 29 12 1 generating 1 11 48 141 ... (A008780) the seventh term in the Euler transforms of 1,1,1,...; 1,2,3,...; 1,3,6,... 1,4,10,... etc.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 6, 11, 7, 1;
1, 10, 27, 29, 12, 1;
1, 14, 57, 96, 72, 21, 1;
1, 21, 117, 277, 319, 176, 38, 1;
...
		

Crossrefs

Cf. A000293, A116673 (row sums), A008778 - A008780, A289656.
Previous Showing 61-70 of 2117 results. Next