cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 2117 results. Next

A132750 A132749 * [1, 2, 3, ...] = A007318 * A065190.

Original entry on oeis.org

1, 4, 9, 21, 49, 113, 257, 577, 1281, 2817, 6145, 13313, 28673, 61441, 131073, 278529, 589825, 1245185, 2621441, 5505025, 11534337, 24117249, 50331649, 104857601, 218103809, 452984833, 939524097, 1946157057, 4026531841
Offset: 0

Views

Author

Gary W. Adamson, Aug 28 2007

Keywords

Comments

Equals double binomial transform of [1, 2, -3, 7, -15, 31, -63, 127, -255, ...]. - Gary W. Adamson, Jul 23 2008
For n >= 1, also the number of cliques in the n-hypercube graph Q_n. - Eric W. Weisstein, Mar 31 2017

Examples

			a(3) = 21 = (1, 3, 3, 1) dot (1, 3, 2, 5) = (1 + 9 + 6 + 5) = 21; where A065190 = (1, 3, 2, 5, 4, 7, 6, 9, ...).
		

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..30], n-> n*2^(n-1) + 2^n + 1 )); # G. C. Greubel, Nov 20 2019
  • Magma
    [n*2^(n-1) + 2^n + 1 - 0^n : n in [0..30]]; // Wesley Ivan Hurt, Sep 26 2014
    
  • Maple
    A132750:=n->n*2^(n-1)+2^n+1-0^n: seq(A132750(n), n=0..30); # Wesley Ivan Hurt, Sep 26 2014
  • Mathematica
    Join[{1}, Table[n*2^(n-1) +2^n +1, {n, 30}]] (* Wesley Ivan Hurt, Sep 26 2014 *)
    Join[{1}, LinearRecurrence[{5,-8,4}, {4,9,21}, 30]] (* Vincenzo Librandi, Apr 01 2017 *)
  • PARI
    vector(31, n, if(n==1, 1, (n-1)*2^(n-2) + 2^(n-1) + 1)) \\ G. C. Greubel, Nov 20 2019
    
  • Sage
    [1]+[n*2^(n-1) + 2^n + 1 for n in (1..30)] # G. C. Greubel, Nov 20 2019
    

Formula

A132749 as an infinite lower triangular matrix * vector [1, 2, 3, ...]. Binomial transform of A065190 (with an incorrect offset)
Row sums of triangle A135224. - Gary W. Adamson, Nov 23 2007
G.f.: (1-x-3*x^2+4*x^3)/((1-x)*(1-2*x)^2). - Colin Barker, Aug 09 2012
a(n) = n*2^(n-1) + 2^n + 1 - 0^n. - Tim Smith, Sep 25 2014
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3). - Wesley Ivan Hurt, Sep 26 2014
E.g.f.: -1 + exp(x) + (1+x)*exp(2*x). - G. C. Greubel, Nov 20 2019

A132823 A007318 + 2*A103451 - 2*A000012.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 8, 8, 3, 1, 1, 4, 13, 18, 13, 4, 1, 1, 5, 19, 33, 33, 19, 5, 1, 1, 6, 26, 54, 68, 54, 26, 6, 1, 1, 7, 34, 82, 124, 124, 82, 34, 7, 1, 1, 8, 43, 118, 208, 250, 208, 118, 43, 8, 1, 1, 9, 53, 163, 328, 460, 460, 328, 163, 53, 9, 1
Offset: 0

Views

Author

Gary W. Adamson, Sep 02 2007

Keywords

Comments

Row sums = A132824: (1, 2, 2, 4, 10, 24, 54, 116, 242, ...).

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 0,  1;
  1, 1,  1,  1;
  1, 2,  4,  2,   1;
  1, 3,  8,  8,   3,   1;
  1, 4, 13, 18,  13,   4,  1;
  1, 5, 19, 33,  33,  19,  5,  1;
  1, 6, 26, 54,  68,  54, 26,  6, 1;
  1, 7, 34, 82, 124, 124, 82, 34, 7, 1;
  ...
		

Crossrefs

A(2n,n) gives A115112 for n>0.

Formula

A007318 + 2*A103451 - 2*A000012 as infinite lower triangular matrices.

Extensions

One missing 1 inserted and more terms added by Alois P. Heinz, Feb 10 2019

A133084 A007318 * A133080.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 4, 1, 5, 4, 10, 4, 1, 6, 5, 20, 10, 6, 1, 7, 6, 35, 20, 21, 6, 1, 8, 7, 56, 35, 56, 21, 8, 1, 9, 8, 84, 56, 126, 56, 36, 8, 1, 10, 9, 120, 84, 252, 126, 120, 36, 10, 1, 11, 10, 165, 120, 462, 252, 330, 120, 55, 10, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 16 2007

Keywords

Comments

Row sums = A003945: (1, 3, 6, 12, 24, 48, 96, ...).
A133084 is jointly generated with A133567 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+(x+1)*v(n-1)x and v(n,x)=x*u(n-1,x)+v(n-1,x)+1. See the Mathematica section. - Clark Kimberling, Feb 28 2012

Examples

			First few rows of the triangle:
  1;
  2,  1;
  3,  2,  1;
  4,  3,  4,  1;
  5,  4, 10,  4,  1;
  6,  5, 20, 10,  6,  1;
  7,  6, 35, 20, 21,  6,  1;
  ...
		

Crossrefs

Cf. A000292 (column 3 and 4), A000389 (column 5 and 6), A000580 (column 7).

Programs

  • Magma
    /* As triangle */ [[(1-(1+(-1)^k)/2 )*Binomial(n, k)+((1+(-1)^k)/2)*Binomial(n-1, k-1): k in [1..n]]: n in [1.. 11]]; // Vincenzo Librandi, Oct 21 2017
  • Maple
    A133084 := proc(n,k)
        add(binomial(n-1,i-1)*A133080(i,k),i=1..n) ;
    end proc: # R. J. Mathar, Jun 13 2025
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A133567 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A133084 *)
    (* Clark Kimberling, Feb 28 2012 *)
    T[n_, k_] := If[k == n, 1, (1  - (1 + (-1)^k)/2 )*Binomial[n, k] + ((1 + (-1)^k)/2)*Binomial[n - 1, k - 1]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, Oct 21 2017 *)
  • PARI
    for(n=1,10, for(k=1,n, print1(if(k == n, 1, (1  - (1 + (-1)^k)/2 )*binomial(n, k) + ((1 + (-1)^k)/2)*binomial(n - 1, k - 1)), ", "))) \\ G. C. Greubel, Oct 21 2017
    

Formula

Binomial transform of triangle A133080.

A133124 A007318 * [1, 2, 2, 3, 2, 3, 2, 3, 2, ...].

Original entry on oeis.org

1, 3, 7, 16, 35, 74, 153, 312, 631, 1270, 2549, 5108, 10227, 20466, 40945, 81904, 163823, 327662, 655341, 1310700, 2621419, 5242858, 10485737, 20971496, 41943015, 83886054, 167772133, 335544292, 671088611, 1342177250, 2684354529, 5368709088, 10737418207, 21474836446
Offset: 0

Views

Author

Gary W. Adamson, Sep 19 2007

Keywords

Examples

			a(3) = (1, 3, 3, 1) dot (1, 2, 2, 3) = (1 + 6 + 6 + 3).
a(5) = 74 = 2^6 + 2^4 - 6 = 64 + 16 - 6.
		

Crossrefs

Programs

  • Magma
    [1] cat [5*2^(n - 1) - n -1: n in [1..50]]; // G. C. Greubel, Oct 21 2017
  • Mathematica
    Join[{1}, Table[5*2^(n-1) - n -1, {n,1,50}]] (* G. C. Greubel, Oct 21 2017 *)
    LinearRecurrence[{4,-5,2},{1,3,7,16},40] (* Harvey P. Dale, Jun 18 2024 *)
  • PARI
    concat(1, for(n=1,50, print1(5*2^(n - 1) - n - 1, ", "))) \\ G. C. Greubel, Oct 21 2017
    

Formula

Binomial transform of [1, 2, 2, 3, 2, 3, 2, 3, 2, ...].
a(n) = 5*2^(n-1) - (n+1), for n >= 1.
Row sums of triangle A133938. - Gary W. Adamson, Sep 29 2007
G.f.: 1 + x*(3-5*x+3*x^2)/((1-2*x)*(1-x)^2). - R. J. Mathar, Nov 14 2007
E.g.f.: (5*exp(2*x) - 2*(1+x)*exp(x) - 1)/2. - G. C. Greubel, Oct 21 2017

Extensions

Terms a(9) onward added by G. C. Greubel, Oct 21 2017

A134083 A007318 * A134082.

Original entry on oeis.org

1, 3, 1, 5, 6, 1, 7, 15, 9, 1, 9, 28, 30, 12, 1, 11, 45, 70, 50, 15, 1, 13, 66, 135, 140, 75, 18, 1, 15, 91, 231, 315, 245, 105, 21, 1, 17, 120, 364, 616, 630, 392, 140, 24, 1, 19, 153, 540, 1092, 1386, 1134, 588, 180, 27, 1
Offset: 0

Views

Author

Gary W. Adamson, Oct 07 2007

Keywords

Comments

Row sums = A001787: (1, 4, 12, 32, 80, 192, ...).
A134083 * [1,2,3,...] = A084850: (1, 5, 20, 68, 208, 592, ...).

Examples

			First few rows of the triangle:
   1;
   3,  1;
   5,  6,   1;
   7, 15,   9,   1;
   9, 28,  30,  12,   1;
  11, 45,  70,  50,  15,   1;
  13, 66, 135, 140,  75,  18,  1;
  15, 91, 231, 315, 245, 105, 21, 1;
  ...
		

Crossrefs

Formula

Binomial transform of A134082
From formalism in A132382, e.g.f. = I_o[2*(u*x)^(1/2)] exp(x)(1+2x) where I_o is the zeroth modified Bessel function of the first kind, i.e., I_o[2*(u*x)^(1/2)] = Sum_{j>=0} u^j/j! * x^j/j!. - Tom Copeland, Dec 07 2007
Row polynomial e.g.f.: exp(x*y) * exp(x) * (1+2x). - Tom Copeland, Dec 03 2013

A135837 A007318 * a triangle with (1, 2, 2, 4, 4, 8, 8, ...) in the main diagonal and the rest zeros.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 6, 6, 4, 1, 8, 12, 16, 4, 1, 10, 20, 40, 20, 8, 1, 12, 30, 80, 60, 48, 8, 1, 14, 42, 140, 140, 168, 56, 16, 1, 16, 56, 224, 280, 448, 224, 128, 16, 1, 18, 72, 336, 504, 1008, 672, 576, 144, 32
Offset: 1

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Comments

This sequence is jointly generated with A117919 as a triangular array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = u(n-1,x) + x*v(n-1)x and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 26 2012
Subtriangle of the triangle (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012

Examples

			First few rows of the triangle:
  1;
  1,  2;
  1,  4,  2;
  1,  6,  6,  4;
  1,  8, 12, 16,  4;
  1, 10, 20, 40, 20,  8;
  1, 12, 30, 80, 60, 48,  8;
  ...
From _Philippe Deléham_, Mar 19 2012: (Start)
(1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1, -1, 0, 0, ...) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  4,  2,  0;
  1,  6,  6,  4,  0;
  1,  8, 12, 16,  4,  0;
  1, 10, 20, 40, 20,  8,  0;
  1, 12, 30, 80, 60, 48, 8,  0; (End)
		

Crossrefs

Programs

  • Haskell
    a135837 n k = a135837_tabl !! (n-1) !! (k-1)
    a135837_row n = a135837_tabl !! (n-1)
    a135837_tabl = [1] : [1, 2] : f [1] [1, 2] where
       f xs ys = ys' : f ys ys' where
         ys' = zipWith3 (\u v w -> 2 * u - v + 2 * w)
                        (ys ++ [0]) (xs ++ [0, 0]) ([0, 0] ++ xs)
    -- Reinhard Zumkeller, Aug 08 2012
    
  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= 2 x*u[n-1, x] + v[n-1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A117919 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A135837 *) (* Clark Kimberling, Feb 26 2012 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[k==n, 2^Floor[n/2], 2*T[n-1, k] - T[n-2, k] + 2*T[n-2, k-2]]]];
    Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 07 2022 *)
  • Sage
    def T(n,k): # A135837
        if (k<1 or k>n): return 0
        elif (k==1): return 1
        elif (k==n): return 2^(n//2)
        else: return 2*T(n-1, k) - T(n-2, k) + 2*T(n-2, k-2)
    flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 07 2022

Formula

Binomial transform of a triangle with (1, 2, 2, 4, 4, 8, 8, ...) in the main diagonal and the rest zeros.
Sum_{k=1..n} T(n, k) = A001333(n).
From Philippe Deléham, Mar 19 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-x+2*y*x^2-2*y^2*x^2)/(1-2*x+2*y*x^2-2*y^2*x^2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2, T(n,k) = 0 if k < 0 or if k > n. (End)
G.f.: x*y*(1-x+2*x*y)/(1-2*x-2*x^2*y^2+x^2). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Feb 07 2022: (Start)
T(n, n) = A016116(n).
T(n, 2) = 2*(n-1).
T(n, 3) = 2*A000217(n-2). (End)

A143690 a(n) = A007318 * [1, 6, 14, 9, 0, 0, 0, ...].

Original entry on oeis.org

1, 7, 27, 70, 145, 261, 427, 652, 945, 1315, 1771, 2322, 2977, 3745, 4635, 5656, 6817, 8127, 9595, 11230, 13041, 15037, 17227, 19620, 22225, 25051, 28107, 31402, 34945, 38745, 42811, 47152, 51777, 56695, 61915, 67446, 73297, 79477, 85995, 92860, 100081, 107667
Offset: 0

Views

Author

Gary W. Adamson, Aug 29 2008

Keywords

Comments

Binomial transform of [1, 6, 14, 9, 0, 0, 0,...].
Row sums of triangle A033292.

Examples

			a(3) = 70 = (1, 3, 3, 1) dot (1, 6, 14, 9) = (1 + 18 + 42 + 9). a(3) = 70 = sum of row 3 terms of triangle A033292: (13 + 16 + 19, + 22).
		

Crossrefs

Cf. A226449. - Bruno Berselli, Jun 09 2013

Programs

  • Mathematica
    Table[(n+1)*(3*n^2+2*n+2)/2, {n,0,50}] (* G. C. Greubel, May 30 2021 *)
  • Sage
    [(n+1)*(3*n^2+2*n+2)/2 for n in (0..50)] # G. C. Greubel, May 30 2021

Formula

From R. J. Mathar, Aug 29 2008: (Start)
G.f.: (1 +3*x +5*x^2)/(1-x)^4.
a(n) = A002412(n+1) + 5*A000292(n-1). (End)
a(n) = A000326(n+1) + (n+1)*A000326(n). - Bruno Berselli, Jun 07 2013
From G. C. Greubel, May 30 2021: (Start)
a(n) = (n+1)*(3*n^2 +2*n +2)/2.
E.g.f.: (1/2)*(2 +12*x +14*x^2 +3*x^3)*exp(x). (End)

Extensions

Extended beyond a(14) by R. J. Mathar, Aug 29 2008

A163866 Partial sums of A007318.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 11, 14, 15, 16, 20, 26, 30, 31, 32, 37, 47, 57, 62, 63, 64, 70, 85, 105, 120, 126, 127, 128, 135, 156, 191, 226, 247, 254, 255, 256, 264, 292, 348, 418, 474, 502, 510, 511, 512, 521, 557, 641, 767, 893, 977, 1013, 1022, 1023, 1024, 1034, 1079, 1199
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 06 2009

Keywords

Examples

			a(1)=0!/(0!(0-0)!)=1.
		

Crossrefs

Programs

  • Haskell
    a163866 n = a163866_list !! (n-1)
    a163866_list = scanl1 (+) $ concat a007318_tabl
    -- Reinhard Zumkeller, Jul 18 2015
    
  • Mathematica
    Flatten[Table[2^a-1+Sum[Binomial[a,p],{p,0,b}],{a,0,10},{b,0,a}]] (* Frank M Jackson, Apr 25 2011 *)
    Accumulate[Flatten[Table[Binomial[n,k],{n,0,11},{k,0,n}]]] (* Harvey P. Dale, Dec 04 2012 *)
  • PARI
    lista(nn) = {my(i=0, j=0, p=0); for (n=1, nn, p += binomial(i, j); print1(p, ", "); j++; if (j > i, j = 0; i++););} \\ Michel Marcus, Jan 25 2019

Formula

a(n) = Sum_{j=1..n-1} A007318(j).

Extensions

Entries checked by R. J. Mathar, Aug 11 2009

A166454 Triangle read by rows: T(n, k) = (1/2)*(A007318(n,k) - A047999(n,k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 2, 5, 5, 2, 3, 7, 10, 7, 3, 3, 10, 17, 17, 10, 3, 4, 14, 28, 35, 28, 14, 4, 4, 18, 42, 63, 63, 42, 18, 4, 5, 22, 60, 105, 126, 105, 60, 22, 5, 5, 27, 82, 165, 231, 231, 165, 82, 27, 5, 6, 33, 110, 247, 396, 462, 396, 247, 110, 33, 6
Offset: 2

Views

Author

Gary W. Adamson, Oct 14 2009

Keywords

Comments

Row sums = A120739: (1, 2, 7, 14, 30, 60, 127, 254, ...).

Examples

			First few rows of the triangle:
  1;
  1,   1;
  2,   3,   2;
  2,   5,   5,   2;
  3,   7,  10,   7,   3;
  3,  10,  17,  17,  10,   3;
  4,  14,  28,  35,  28,  14,   4;
  4,  18,  42,  63,  63,  42,  18,   4;
  5,  22,  60, 105, 126, 105,  60,  22,   5;
  5,  27,  82, 165, 231, 231, 165,  82,  27,   5;
  6,  33, 110, 247, 396, 462, 396, 247, 110,  33,   6;
  ...
		

Crossrefs

Cf. A007318, A011848, A001700 (central terms).

Programs

  • GAP
    Flat(List([2..12],n->List([1..n-1],m->Int(Binomial(n,m)/2)))); # Muniru A Asiru, Apr 14 2019
    
  • Haskell
    Following Bagula's formula
    a166454 n k = a166454_tabl !! (n-2) !! (k-1)
    a166454_row n = a166454_tabl !! (n-2)
    a166454_tabl = map (map (flip div 2) . init . tail) $ drop 2 a007318_tabl
    -- Reinhard Zumkeller, Mar 04 2015
    
  • Magma
    [[Floor(Binomial(n,k)/2): k in [1..n-1]]: n in [2..12]]; // G. C. Greubel, Apr 16 2019
    
  • Maple
    seq(seq(floor(binomial(n,m)/2),m=1..n-1),n=2..12); # Muniru A Asiru, Apr 14 2019
  • Mathematica
    T[n_, m_] = Floor[Binomial[n, m]/2]; Table[T[n, m], {n, 2, 12}, {m, 1, n-1}]//Flatten (* Roger L. Bagula, Mar 07 2010*)
  • PARI
    {T(n,k) = binomial(n,k)\2 };
    for(n=2,12, for(k=1,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 16 2019
    
  • Sage
    [[floor(binomial(n,k)/2) for k in (1..n-1)] for n in (2..12)] # G. C. Greubel, Apr 16 2019

Formula

T(n, k) = (1/2)*(A007318(n,k) - A047999(n,k)), nonzero terms.
T(n, m) = floor(binomial(n, m)/2). - Roger L. Bagula, Mar 07 2010

A256113 Table read by rows: T(1,1) = 1, for n > 1: row n = union of distinct prime factors occurring in terms of n-th row of Pascal's triangle, cf. A007318.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 5, 2, 3, 5, 3, 5, 7, 2, 5, 7, 2, 3, 7, 2, 3, 5, 7, 2, 3, 5, 7, 11, 2, 3, 5, 7, 11, 2, 3, 5, 11, 13, 2, 3, 7, 11, 13, 3, 5, 7, 11, 13, 2, 3, 5, 7, 11, 13, 2, 5, 7, 11, 13, 17, 2, 3, 5, 7, 11, 13, 17, 2, 3, 7, 11, 13, 17, 19, 2, 3, 5, 11, 13
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 16 2015

Keywords

Examples

			.  n |   T(n,k)   |                A001142(n) | A007318(n,0..n)
. ---+------------+---------------------------+-------------------------
.  1 | 1          |                         1 | 1  1
.  2 | 2          |                         2 | 1  2  1
.  3 | 3          |                         9 | 1  3  3   1
.  4 | 2 3        |                        96 | 1  4  6   4   1
.  5 | 2 5        |                      2500 | 1  5 10  10   5   1
.  6 | 2 3 5      |                    162000 | 1  6 15  20  15   6   1
.  7 | 3 5 7      |                  26471025 | 1  7 21  35  35  21   7   1
.  8 | 2 5 7      |               11014635520 | 1  8 28  56  70  56  28 ...
.  9 | 2 3 7      |            11759522374656 | 1  9 36  84 126 126  84 ...
. 10 | 2 3 5 7    |         32406091200000000 | 1 10 45 120 210 252 210 ...
. 11 | 2 3 5 7 11 |     231627686043080250000 | 1 11 55 165 330 462 462 ...
. 12 | 2 3 5 7 11 | 4311500661703860387840000 | 1 12 66 220 495 792 924 ...
		

Crossrefs

Cf. A007318, A027748, A001142, A004788 (row lengths), A056606 (row products).

Programs

  • Haskell
    a256113 n k = a256113_tabf !! (n-1) !! (n-1)
    a256113_row n = a256113_tabf !! (n-1)
    a256113_tabf = map a027748_row $ tail a001142_list
Previous Showing 71-80 of 2117 results. Next