cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A014787 Expansion of Jacobi theta constant (theta_2/2)^12.

Original entry on oeis.org

1, 12, 66, 232, 627, 1452, 2982, 5544, 9669, 16016, 25158, 38160, 56266, 80124, 111816, 153528, 205260, 270876, 353870, 452496, 574299, 724044, 895884, 1103520, 1353330, 1633500, 1966482, 2360072, 2792703, 3299340, 3892922, 4533936, 5273841, 6134448
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as the sum of 12 triangular numbers from A000217.

Examples

			a(2) = (A001160(7) - A000735(3))/256 = (16808 - (-88))/256 = 66. - _Wolfdieter Lang_, Jan 13 2017
		

Crossrefs

Column k=12 of A286180.
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Formula

From Wolfdieter Lang, Jan 13 2017: (Start)
G.f.: 12th power of g.f. for A010054.
a(n) = (A001160(2*n+3) - A000735(n+1))/256. See the Ono et al. link, case k=12, Theorem 7. (End)
a(0) = 1, a(n) = (12/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 12*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

Extensions

More terms from Seiichi Manyama, May 05 2017

A014809 Expansion of Jacobi theta constant (theta_2/2)^24.

Original entry on oeis.org

1, 24, 276, 2048, 11178, 48576, 177400, 565248, 1612875, 4200352, 10131156, 22892544, 48897678, 99448320, 193740408, 363315200, 658523925, 1157743824, 1980143600, 3303168000, 5386270686, 8602175744, 13477895856, 20748607488, 31425764410, 46883528256, 68969957700
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as the sum of 24 triangular numbers from A000217.

Crossrefs

Column k=24 of A286180.
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n+3, 2]}, (2^(11*e) * DivisorSigma[11, (n+3)/2^e] - RamanujanTau[n+3] - 2072 * If[OddQ[n], RamanujanTau[(n+3)/2], 0]) / 176896]; Array[a, 27, 0] (* Amiram Eldar, Jan 11 2025 *)

Formula

From Wolfdieter Lang, Jan 13 2017: (Start)
G.f.: 24th power of the g.f. for A010054.
a(n) = (A096963(n+3) - tau(n+3) - 2072*tau((n+3)/2))/176896, with Ramanujan's tau function given in A000594, and tau(n) is put to 0 if n is not integer. See the Ono et al. link, case k=24, Theorem 8. (End)
a(n) = 1/72 * Sum_{a, b, x, y > 0, a*x + b*y = n + 3, x == y == 1 mod 2 and a > b} (a*b)^3*(a^2 - b^2)^2. - Seiichi Manyama, May 05 2017
a(0) = 1, a(n) = (24/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 24*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

Extensions

More terms from Seiichi Manyama, May 05 2017

A206622 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^2).

Original entry on oeis.org

1, 2, 10, 36, 118, 376, 1148, 3376, 9654, 26894, 73192, 195188, 510948, 1315048, 3332720, 8326448, 20529526, 49998884, 120379574, 286726340, 676057144, 1578880480, 3654180236, 8385122192, 19085029540, 43103203626, 96630606968, 215105226728, 475608824400
Offset: 0

Views

Author

Paul D. Hanna, Feb 10 2012

Keywords

Comments

Compare g.f. to: Product_{n>0} (1+x^n)/(1-x^n) = exp( Sum_{n>=1} (sigma(2*n) - sigma(n))*x^n/n ) which equals 1/theta_4(x) = 1/(1 + 2*Sum_{n>=1} (-x)^(n^2)).
Convolution of A023871 and A027998. - Vaclav Kotesovec, Aug 19 2015
In general, if g.f. = Product_{k>=1} ((1 + x^k)/(1 - x^k))^(c2*k^2 + c1*k + c0) and c2>0, then a(n) ~ exp(Pi * 2^(5/4) * c2^(1/4) * n^(3/4) / 3 + 7*c1 * Zeta(3) * sqrt(n) / (Pi^2 * sqrt(2*c2)) + (c0*Pi / (2^(5/4) * c2^(1/4)) - 49*c1^2 * Zeta(3)^2 / (2^(5/4) * c2^(5/4) * Pi^5)) * n^(1/4) + 22411 * c1^3 * Zeta(3)^3 / (196 * c2^2 * Pi^8) - 7*c0*c1 * Zeta(3) / (4*c2 * Pi^2) - c2 * Zeta(3) / (4*Pi^2) + c1/12) * Pi^(c1/12) * c2^(1/8 + c0/8 + c1/48) / (A^c1 * 2^(15/8 + 11*c0/8 + 7*c1/48) * n^(5/8 + c0/8 + c1/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 08 2017
Let A(x) denote the g.f. and let m be an integer. Define a sequence by u(n) = [x^n] A(x)^(m*n). We conjecture that the supercongruence u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) holds for all positive integers n and r and all primes p >= 5. Cf. A380582. - Peter Bala, Jan 21 2025

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 36*x^3 + 118*x^4 + 376*x^5 + 1148*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^4/(1-x^2)^4 * (1+x^3)^9/(1-x^3)^9 *...
Also, A(x) = Euler transform of [2,7,18,28,50,63,98,112,162,175,...]:
A(x) = 1/((1-x)^2*(1-x^2)^7*(1-x^3)^18*(1-x^4)^28*(1-x^5)^50*(1-x^6)^63*...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    {a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^2)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 3)-sigma(m, 3))/4*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=local(InvEulerGF=x*(2+7*x+12*x^2+7*x^3+2*x^4)/(1-x^2+x*O(x^n))^3);polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} (sigma_3(2*n) - sigma_3(n))/4 * x^n/n ), where sigma_3(n) is the sum of cubes of divisors of n (A001158).
The inverse Euler transform has g.f.: x*(2 + 7*x + 12*x^2 + 7*x^3 + 2*x^4)/(1-x^2)^3.
a(n) ~ exp(2^(5/4)*Pi*n^(3/4)/3 - Zeta(3)/(4*Pi^2)) / (2^(15/8) * n^(5/8)), where Zeta(3) = A002117. - Vaclav Kotesovec, Aug 19 2015
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A007331(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017

A076577 Sum of squares of divisors d of n such that n/d is odd.

Original entry on oeis.org

1, 4, 10, 16, 26, 40, 50, 64, 91, 104, 122, 160, 170, 200, 260, 256, 290, 364, 362, 416, 500, 488, 530, 640, 651, 680, 820, 800, 842, 1040, 962, 1024, 1220, 1160, 1300, 1456, 1370, 1448, 1700, 1664, 1682, 2000, 1850, 1952, 2366, 2120, 2210, 2560, 2451, 2604
Offset: 1

Views

Author

Vladeta Jovovic, Oct 19 2002

Keywords

Examples

			G.f. = x + 4*x^2 + 10*x^3 + 16*x^4 + 26*x^5 + 40*x^6 + 50*x^7 + 64*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a:= n -> mul(`if`(t[1]=2, 2^(2*t[2]),
         (t[1]^(2*(1+t[2]))-1)/(t[1]^2-1)),t=ifactors(n)[2]):
    map(a, [$1..100]); # Robert Israel, Jul 05 2016
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d^2 Mod[ n/d, 2], {d, Divisors @ n}]]; (* Michael Somos, Jun 09 2014 *)
    Table[CoefficientList[Series[-Log[Product[(x^k - 1)^k/(x^k + 1)^k, {k, 1, 80}]]/2, {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *)
    f[2, e_] := 4^e; f[p_, e_] := (p^(2*e + 2) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d^2*((n/d) % 2)); \\ Michel Marcus, Jun 09 2014

Formula

G.f.: Sum_{m>0} m^2*x^m/(1-x^(2*m)). More generally, if b(n, k) is sum of k-th powers of divisors d of n such that n/d is odd then b(2n, k) = sigma_k(2n)-sigma_k(n), b(2n+1, k) = sigma_k(2n+1), where sigma_k(n) is sum of k-th powers of divisors of n. G.f. for b(n, k): Sum_{m>0} m^k*x^m/(1-x^(2*m)).
b(n, k) is multiplicative: b(2^e, k) = 2^(k*e), b(p^e, k) = (p^(ke+k)-1)/(p^k-1) for an odd prime p.
a(2*n) = sigma_2(2*n)-sigma_2(n), a(2*n+1) = sigma_2(2*n+1), where sigma_2(n) is sum of squares of divisors of n (cf. A001157).
b(n, k) = (sigma_k(2n)-sigma_k(n))/2^k. - Vladeta Jovovic, Oct 06 2003
Dirichlet g.f.: zeta(s)*(1-1/2^s)*zeta(s-2). - Geoffrey Critzer, Mar 28 2015
L.g.f.: -log(Product_{ k>0 } (x^k-1)^k/(x^k+1)^k)/2 = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
Sum_{k=1..n} a(k) ~ 7*Zeta(3)*n^3 / 24. - Vaclav Kotesovec, Feb 08 2019

A226255 Number of ways of writing n as the sum of 11 triangular numbers.

Original entry on oeis.org

1, 11, 55, 176, 440, 957, 1848, 3245, 5412, 8580, 12892, 18888, 26895, 36916, 50160, 66935, 86658, 111870, 142582, 177320, 221100, 272690, 329065, 399102, 480040, 566808, 672969, 793760, 920326, 1074040, 1248412, 1425974, 1640595, 1882145, 2123385, 2418339, 2743928, 3062895, 3453978, 3880855
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2013

Keywords

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Formula

G.f. is 11th power of g.f. for A010054.
a(0) = 1, a(n) = (11/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 11*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

A035016 Fourier coefficients of E_{0,4}.

Original entry on oeis.org

1, -16, 112, -448, 1136, -2016, 3136, -5504, 9328, -12112, 14112, -21312, 31808, -35168, 38528, -56448, 74864, -78624, 84784, -109760, 143136, -154112, 149184, -194688, 261184, -252016, 246176, -327040, 390784, -390240, 395136, -476672, 599152, -596736
Offset: 0

Views

Author

Barry Brent (barryb(AT)primenet.com)

Keywords

Comments

E_{0,4} is unique normalized entire modular form of weight 4 for \Gamma_0(2) with a zero at zero. Also |a(n)| matches expansion of theta_3(z)^8 (A000143).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 16*q + 112*q^2 - 448*q^3 + 1136*q^4 - 2016*q^5 + 3136*q^6 - 5504*q^7 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (31.61).

Crossrefs

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A035016List(len) = JacobiTheta4(len, 8)
    A035016List(34) |> println # Peter Luschny, Mar 12 2018
  • Maple
    a_list := proc(len) series(JacobiTheta4(0,x)^8,x,len+1); seq(coeff(%,x,j),j=0..len) end: a_list(33); # Peter Luschny, Mar 14 2017
  • Mathematica
    a[0] = 1; a[n_] := 16*Sum[(-1)^d*d^3, {d, Divisors[n]}]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Feb 06 2012, after Pari *)
    QP = QPochhammer; s = QP[q]^16/QP[q^2]^8 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 16 * sumdiv( n, d, (-1)^d * d^3))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k) / (1 + x^k), 1 + x * O(x^n))^8, n))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x^n * O(x); polcoeff( (eta(x + A)^2 / eta(x^2 + A))^8, n))}; /* Michael Somos, Jan 11 2009 */
    
  • Python
    from sympy import divisors
    def a(n): return 1 if n==0 else 16*sum((-1)**d*d**3 for d in divisors(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017
    
  • Sage
    A = ModularForms( Gamma0(4), 4, prec=34) . basis(); A[0] - 16*A[1] + 112*A[2]; # Michael Somos, Jun 15 2014
    

Formula

a(0)=1; for n>0, a(n) = 16*sum_{0
G.f.: Product_{n>=1} ((1-q^n)/(1+q^n))^8 [Fine]
Expansion of phi(-q)^8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jun 15 2014
Expansion of eta(q)^16 / eta(q^2)^8 in powers of q.
Euler transform of period 2 sequence [ -16, -8, ...]. - Michael Somos, Apr 10 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + u*v * (u - 2*v + 16*w) - 16 * u*w^2. - Michael Somos, Apr 10 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 256 (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A007331. - Michael Somos, Jan 11 2009
a(n) = (-1)^n * A000143(n).
Convolution square of A096727. - Michael Somos, Jun 15 2014

A096960 a(n) = Sum_{0

Original entry on oeis.org

1, 32, 244, 1024, 3126, 7808, 16808, 32768, 59293, 100032, 161052, 249856, 371294, 537856, 762744, 1048576, 1419858, 1897376, 2476100, 3201024, 4101152, 5153664, 6436344, 7995392, 9768751, 11881408, 14408200, 17211392, 20511150
Offset: 1

Author

Ralf Stephan, Jul 18 2004

Keywords

Examples

			G.f. = q + 32*q^2 + 244*q^3 + 1024*q^4 + 3126*q^5 + 7808*q^6 + 16808*q^7 + 32768*q^8 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(2), 6), 30) [2]; /* Michael Somos, Nov 30 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d^5 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 2, 0, q]^4) EllipticTheta[ 2, 0, q^(1/2)]^8 / 256, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^5))};
    
  • Sage
    ModularForms( Gamma0(2), 6, prec=33).gen(1).coefficients(30) # Michael Somos, Jun 04 2013
    

Formula

G.f.: Sum {k>0} k^5 * x^k / (1 - x^(2*k)).
From Amiram Eldar, Nov 01 2022: (Start)
Multiplicative with a(2^e) = 2^(5*e) and a(p^e) = (p^(5*e+5)-1)/(p^5-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^6, where c = 21*zeta(6)/128 = 0.166907... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-5)*(1-1/2^s). - Amiram Eldar, Jan 08 2023

A002408 Expansion of 8-dimensional cusp form.

Original entry on oeis.org

0, 1, -8, 28, -64, 126, -224, 344, -512, 757, -1008, 1332, -1792, 2198, -2752, 3528, -4096, 4914, -6056, 6860, -8064, 9632, -10656, 12168, -14336, 15751, -17584, 20440, -22016, 24390, -28224, 29792, -32768, 37296, -39312, 43344, -48448, 50654, -54880, 61544, -64512, 68922
Offset: 0

Keywords

Comments

Essentially the same as A007331.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
"For Gamma, it is known that any modular form is a weighted homogeneous polynomial in Theta_Z, which has weight 1/2, and the modular form delta_8(t) := e^(Pi i tau) Product_{m=1..oo} ((1 - e^(Pi i m tau)) (1 + e^(2 Pi i m tau)))^8 = e^(Pi i tau) - 8 e^(2 Pi i tau) + 28 e^(3 Pi i tau) - 64 e^(4 Pi i tau) + 126 e^(5 Pi i tau) ... of weight 4." [Elkies, p. 1242]

Examples

			G.f. = q - 8*q^2 + 28*q^3 - 64*q^4 + 126*q^5 - 224*q^6 + 344*q^7 ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 187.
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg 1994, p. 133.

Crossrefs

Programs

  • Maple
    q*product((1-q^(2*k-1))^8*(1-q^(4*k))^8, k=1..75);
  • Mathematica
    a[0] = 0; a[n_] := -(-1)^n*Sum[ Mod[n/d, 2]*d^3, {d, Divisors[n]}]; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Jan 27 2012, after Michael Somos *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^4] / QPochhammer[ q^2])^8, {q, 0, n}]; (* Michael Somos, May 25 2014 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) / eta(x^2 + A))^8, n))}; /* Michael Somos, Jul 16 2004 */
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (prod(k=1, n, (1 -( k%4==0) * x^k) * (1 - (k%2==1) * x^k), 1 + A))^8, n))}; /* Michael Somos, Jul 16 2004 */
    
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, (n/d%2) * d^3))}; /* Michael Somos, May 31 2005 */
    
  • Python
    from sympy import divisors
    def a(n): return 0 if n == 0 else -(-1)**n * sum([((n//d)%2) * d**3 for d in divisors(n)])
    print([a(n) for n in range(101)])  # Indranil Ghosh, Jun 24 2017
  • Sage
    A = ModularForms( Gamma0(4), 4, prec=70) . basis(); A[1] - 8*A[2] # _Michael Somos, May 25 2014
    

Formula

Expansion of (eta(q)* eta(q^4) / eta(q^2))^8 in powers of q. - Michael Somos, Jul 16 2004
Euler transform of period 4 sequence [-8, 0, -8, -8, ...]. - Michael Somos, Jul 16 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = +u^4*w*v + 16*u^3*w*v^2 + 16*u^2*w^2*v^2 + 256*u^3*w^3 + 256*u^3*w^2*v + 4096*u^2*w^3*v + 4096*u*w^4*v + 4096*u*w^3*v^2 - u^2*v^4 - 16*u^2*w*v^3 - 256*u*w^2*v^3 - 256*w^2*v^4. - Michael Somos, May 31 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^4*u6^4 + u1^3*u2*u3^3*u6 + 2*u1*u2^3*u3*u6^3 - u2^4*u3^4.
Expansion of q * psi(-q)^8 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Mar 20 2008
a(n) is multiplicative with a(2^e) = -8^e if e>0, a(p^e) = ((p^3)^(e+1) - 1) / (p^3 - 1). - Michael Somos, Mar 20 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 16 (t/i)^4 f(t) where q = exp(2 Pi i t).
G.f.: x * (Product_{k>0} (1 - x^(2*k-1)) * (1 - x^(4*k)))^8.
a(n) = -(-1)^n * A007331(n).
a(2*n) = -8 * A007331(n). a(2*n + 1) = A045823(n). - Michael Somos, May 25 2014
Dirichlet g.f.: zeta(s-3) * zeta(s) * (1 - 1/2^s) * (1 - 1/2^(s-4)). - Amiram Eldar, Nov 03 2023

A286180 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Product_{j>0} (1 + x^j) * (1 - x^(2*j)))^k in powers of x.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 1, 0, 1, 4, 3, 2, 0, 0, 1, 5, 6, 4, 2, 0, 0, 1, 6, 10, 8, 6, 0, 1, 0, 1, 7, 15, 15, 13, 3, 3, 0, 0, 1, 8, 21, 26, 25, 12, 6, 2, 0, 0, 1, 9, 28, 42, 45, 31, 14, 9, 0, 0, 0, 1, 10, 36, 64, 77, 66, 35, 24, 3, 2, 1, 0, 1, 11, 45
Offset: 0

Author

Seiichi Manyama, May 07 2017

Keywords

Comments

A(n, k) is the number of ways of writing n as the sum of k triangular numbers.

Examples

			Square array begins:
   1, 1, 1, 1,  1,  1, ...
   0, 1, 2, 3,  4,  5, ...
   0, 0, 1, 3,  6, 10, ...
   0, 1, 2, 4,  8, 15, ...
   0, 0, 2, 6, 13, 25, ...
		

Crossrefs

Main diagonal gives A106337.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + x^i) (1 - x^(2 i)), {i, Infinity}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten (* Michael De Vlieger, May 07 2017 *)

Formula

G.f. of column k: (Product_{j>0} (1 + x^j) * (1 - x^(2*j)))^k.

A340953 Number of ways to write n as an ordered sum of 8 nonzero triangular numbers.

Original entry on oeis.org

1, 0, 8, 0, 28, 8, 56, 56, 70, 176, 84, 336, 196, 448, 492, 504, 953, 616, 1456, 960, 1814, 1792, 1904, 3032, 2100, 4144, 3052, 4768, 4670, 5264, 6720, 5936, 8876, 7112, 10620, 9648, 11718, 12720, 13216, 15960, 15261, 19608, 17164, 23296, 21226, 25424, 26796, 27272, 32844
Offset: 8

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Programs

  • Maple
    b:= proc(n, k) option remember; local r, t, d; r, t, d:= $0..2;
          if n=0 then `if`(k=0, 1, 0) else
          while t<=n do r:= r+b(n-t, k-1); t, d:= t+d, d+1 od; r fi
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..56);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 56; CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^8, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (theta_2(sqrt(x)) / (2 * x^(1/8)) - 1)^8, where theta_2() is the Jacobi theta function.
Previous Showing 11-20 of 40 results. Next