cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A140635 Smallest positive integer having the same number of divisors as n.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 6, 4, 6, 2, 12, 2, 6, 6, 16, 2, 12, 2, 12, 6, 6, 2, 24, 4, 6, 6, 12, 2, 24, 2, 12, 6, 6, 6, 36, 2, 6, 6, 24, 2, 24, 2, 12, 12, 6, 2, 48, 4, 12, 6, 12, 2, 24, 6, 24, 6, 6, 2, 60, 2, 6, 12, 64, 6, 24, 2, 12, 6, 24, 2, 60, 2, 6, 12, 12, 6, 24, 2, 48, 16, 6, 2, 60, 6, 6, 6, 24, 2
Offset: 1

Views

Author

Max Alekseyev, May 19 2008

Keywords

Comments

a(n) <= n for all n. Moreover, a(n) = n if and only if n belongs to A005179 or A007416.

Crossrefs

Cf. A019505, A138113, A061300 (sequences that can be defined in terms of this sequence).

Programs

  • Mathematica
    a140635[n_] := NestWhile[#+1&, 1, DivisorSigma[0, n]!=DivisorSigma[0, #]&]
    a140635[{m_, n_}] := Map[a140635, Range[m, n]]
    a140635[{1, 89}] (* Hartmut F. W. Hoft, Jun 13 2023 *)
  • PARI
    A140635(n) = { my(nd = numdiv(n)); for (i=1, n, if (numdiv(i) == nd, return (i))); }; \\ After A139770, Antti Karttunen, May 27 2017
    
  • Python
    from sympy import divisor_count as d
    def a(n):
        x=d(n)
        m=1
        while True:
            if d(m)==x: return m
            else: m+=1 # Indranil Ghosh, May 27 2017

Formula

a(n) = A005179(A000005(n)).

A371127 Powers of 2 times powers > 1 of a prime-indexed prime number.

Original entry on oeis.org

3, 5, 6, 9, 10, 11, 12, 17, 18, 20, 22, 24, 25, 27, 31, 34, 36, 40, 41, 44, 48, 50, 54, 59, 62, 67, 68, 72, 80, 81, 82, 83, 88, 96, 100, 108, 109, 118, 121, 124, 125, 127, 134, 136, 144, 157, 160, 162, 164, 166, 176, 179, 191, 192, 200, 211, 216, 218, 236, 241
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      3: {2}
      5: {3}
      6: {1,2}
      9: {2,2}
     10: {1,3}
     11: {5}
     12: {1,1,2}
     17: {7}
     18: {1,2,2}
     20: {1,1,3}
     22: {1,5}
     24: {1,1,1,2}
     25: {3,3}
     27: {2,2,2}
     31: {11}
     34: {1,7}
     36: {1,1,2,2}
		

Crossrefs

Subset of A302540.
Subset of A336101 = powers of 2 times powers of primes.
Positions of 2's in A370820.
Counting prime factors instead of divisors gives A371287.
A000005 counts divisors.
A000961 lists powers of primes, A302596 of prime index.
A001221 counts distinct prime factors.
A003963 gives product of prime indices.
A027746 lists prime factors, indices A112798, length A001222.
A076610 lists products of primes of prime index.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Select[Range[100],Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]==2&]

A275700 a(n) = Product_{d|n} prime(d).

Original entry on oeis.org

2, 6, 10, 42, 22, 390, 34, 798, 230, 1914, 62, 101010, 82, 4386, 5170, 42294, 118, 547170, 134, 951258, 12410, 14694, 166, 170807910, 2134, 24846, 23690, 3285114, 218, 660741510, 254, 5540514, 42470, 49206, 55726, 21399271530, 314, 65526, 68470, 3126785046, 358
Offset: 1

Views

Author

Jaroslav Krizek, Aug 05 2016

Keywords

Comments

a(n) mod n = 0 for n: 1, 2, 6, 30, 78, 330, 390, 870, 1410, 3198, ...

Examples

			a(4) = 42 because the divisors of 4 are: 1, 2 and 4; and prime(1) * prime(2) * prime(4) = 2 * 3 * 7 = 42.
		

Crossrefs

Cf. A007445 (Sum_{d|n} prime(d)).
A version for binary indices is A034729.
Partitions of this type are counted by A054973, strict case of A371284.
The sorted version is A371283, squarefree case of A371288.
These numbers have products A371286, unsorted version A371285.
A000005 counts divisors, row-lengths of A027750.
A027746 lists prime factors, indices A112798, length A001222.

Programs

  • Magma
    [(&*[NthPrime(d): d in Divisors(n)]): n in [1..100]]
    
  • Mathematica
    Table[Times@@(Prime[#]&/@Divisors[n]),{n,50}] (* Harvey P. Dale, Jun 16 2017 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(i=1, #d, prime(d[i])) \\ Felix Fröhlich, Aug 05 2016
    
  • Perl
    use ntheory ":all"; sub a275700 { vecprod(map { nth_prime($) } divisors($[0])); } # Dana Jacobsen, Aug 09 2016

A286605 Restricted growth sequence computed for number of divisors, d(n) (A000005).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 6, 2, 5, 2, 5, 4, 4, 2, 7, 3, 4, 4, 5, 2, 7, 2, 5, 4, 4, 4, 8, 2, 4, 4, 7, 2, 7, 2, 5, 5, 4, 2, 9, 3, 5, 4, 5, 2, 7, 4, 7, 4, 4, 2, 10, 2, 4, 5, 11, 4, 7, 2, 5, 4, 7, 2, 10, 2, 4, 5, 5, 4, 7, 2, 9, 6, 4, 2, 10, 4, 4, 4, 7, 2, 10, 4, 5, 4, 4, 4, 10, 2, 5, 5, 8, 2, 7, 2, 7, 7, 4, 2, 10, 2, 7, 4, 9, 2, 7, 4, 5, 5, 4, 4
Offset: 1

Views

Author

Antti Karttunen, May 11 2017

Keywords

Comments

For all i, j: A101296(i) = A101296(j) => a(i) = a(j).
For all i, j: a(i) = a(j) <=> A000005(i) = A000005(j).

Crossrefs

Cf. A000005, A007416 (positions of records, and also the first occurrence of each n).

Programs

  • Mathematica
    With[{nn = 119}, Function[s, Table[Position[Keys@ s, k_ /; MemberQ[k, n]][[1, 1]], {n, nn}]]@ Map[#1 -> #2 & @@ # &, Transpose@ {Values@ #, Keys@ #}] &@ PositionIndex@ Array[DivisorSigma[0, #] &, nn]] (* Michael De Vlieger, May 12 2017, Version 10 *)
  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A000005(n) = numdiv(n);
    write_to_bfile(1,rgs_transform(vector(10000,n,A000005(n))),"b286605.txt");

A371288 Numbers whose distinct prime indices form the set of divisors of some positive integer.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 32, 34, 36, 40, 42, 44, 48, 50, 54, 62, 64, 68, 72, 80, 82, 84, 88, 96, 100, 108, 118, 124, 126, 128, 134, 136, 144, 160, 162, 164, 166, 168, 176, 192, 200, 216, 218, 230, 236, 242, 248, 250, 252, 254, 256, 268, 272, 288
Offset: 1

Views

Author

Gus Wiseman, Mar 22 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 694782 are {1,2,2,5,5,5,10} with distinct elements {1,2,5,10}, which form the set of divisors of 10, so 694782 is in the sequence.
The terms together with their prime indices begin:
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   34: {1,7}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   48: {1,1,1,1,2}
		

Crossrefs

The squarefree case is A371283, unsorted version A275700.
Partitions of this type are counted by A371284, strict A054973.
Products of squarefree terms are A371286, unsorted version A371285.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, indices A112798, length A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Union[prix[#]]==Divisors[Max@@prix[#]]&]

A099316 Greatest 3-smooth number dividing the n-th minimal number.

Original entry on oeis.org

1, 2, 4, 6, 12, 16, 24, 36, 48, 12, 64, 24, 144, 36, 192, 48, 72, 576, 144, 24, 36, 192, 1024, 36, 1296, 48, 72, 576, 3072, 144, 4096, 144, 5184, 36, 1296, 192, 216, 9216, 288, 12288, 576, 432, 3072, 576, 144, 5184, 72, 1296, 36864, 36, 1296, 9216, 46656, 288
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 12 2004

Keywords

Comments

A minimal number is the smallest number with a given number of divisors, see A007416.

Crossrefs

Formula

a(n) = A065331(A007416(n)).

A371283 Heinz numbers of sets of divisors of positive integers. Numbers whose prime indices form the set of divisors of some positive integer.

Original entry on oeis.org

2, 6, 10, 22, 34, 42, 62, 82, 118, 134, 166, 218, 230, 254, 314, 358, 382, 390, 422, 482, 554, 566, 662, 706, 734, 798, 802, 862, 922, 1018, 1094, 1126, 1174, 1198, 1234, 1418, 1478, 1546, 1594, 1718, 1754, 1838, 1914, 1934, 1982, 2062, 2126, 2134, 2174, 2306
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2024

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     2: {1}
     6: {1,2}
    10: {1,3}
    22: {1,5}
    34: {1,7}
    42: {1,2,4}
    62: {1,11}
    82: {1,13}
   118: {1,17}
   134: {1,19}
   166: {1,23}
   218: {1,29}
   230: {1,3,9}
   254: {1,31}
   314: {1,37}
   358: {1,41}
   382: {1,43}
   390: {1,2,3,6}
		

Crossrefs

Partitions of this type are counted by A054973.
The unsorted version is A275700.
These numbers have products A371286, unsorted version A371285.
Squarefree case of A371288, counted by A371284.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],SameQ[prix[#],Divisors[Last[prix[#]]]]&]

A371285 Heinz number of the multiset union of the divisor sets of each prime index of n.

Original entry on oeis.org

1, 2, 6, 4, 10, 12, 42, 8, 36, 20, 22, 24, 390, 84, 60, 16, 34, 72, 798, 40, 252, 44, 230, 48, 100, 780, 216, 168, 1914, 120, 62, 32, 132, 68, 420, 144, 101010, 1596, 2340, 80, 82, 504, 4386, 88, 360, 460, 5170, 96, 1764, 200, 204, 1560, 42294, 432, 220, 336
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2024

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 105 are {2,3,4}, with divisor sets {{1,2},{1,3},{1,2,4}}, with multiset union {1,1,1,2,2,3,4}, with Heinz number 2520, so a(105) = 2520.
The terms together with their prime indices begin:
          1: {}
          2: {1}
          6: {1,2}
          4: {1,1}
         10: {1,3}
         12: {1,1,2}
         42: {1,2,4}
          8: {1,1,1}
         36: {1,1,2,2}
         20: {1,1,3}
         22: {1,5}
         24: {1,1,1,2}
        390: {1,2,3,6}
         84: {1,1,2,4}
         60: {1,1,2,3}
         16: {1,1,1,1}
         34: {1,7}
         72: {1,1,1,2,2}
		

Crossrefs

Product of A275700 applied to each prime index.
The squarefree case is also A275700.
The sorted version is A371286.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@Join@@Divisors/@prix[n],{n,100}]

Formula

If n = prime(x_1)*...*prime(x_k) then a(n) = A275700(x_1)*...*A275700(x_k).

A371286 Products of elements of A275700 (Heinz numbers of divisor sets). Numbers with a (necessarily unique) factorization into elements of A275700.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 20, 22, 24, 32, 34, 36, 40, 42, 44, 48, 60, 62, 64, 68, 72, 80, 82, 84, 88, 96, 100, 118, 120, 124, 128, 132, 134, 136, 144, 160, 164, 166, 168, 176, 192, 200, 204, 216, 218, 220, 230, 236, 240, 248, 252, 254, 256, 264, 268, 272, 288
Offset: 1

Views

Author

Gus Wiseman, Mar 22 2024

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime factorizations and unique factorizations into terms of A275700 begin:
   1 =             = ()
   2 = 2           = (2)
   4 = 2*2         = (2*2)
   6 = 2*3         = (6)
   8 = 2*2*2       = (2*2*2)
  10 = 2*5         = (10)
  12 = 2*2*3       = (2*6)
  16 = 2*2*2*2     = (2*2*2*2)
  20 = 2*2*5       = (2*10)
  22 = 2*11        = (22)
  24 = 2*2*2*3     = (2*2*6)
  32 = 2*2*2*2*2   = (2*2*2*2*2)
  34 = 2*17        = (34)
  36 = 2*2*3*3     = (6*6)
  40 = 2*2*2*5     = (2*2*10)
  42 = 2*3*7       = (42)
  44 = 2*2*11      = (2*22)
  48 = 2*2*2*2*3   = (2*2*2*6)
  60 = 2*2*3*5     = (6*10)
  62 = 2*31        = (62)
  64 = 2*2*2*2*2*2 = (2*2*2*2*2*2)
  68 = 2*2*17      = (2*34)
  72 = 2*2*2*3*3   = (2*6*6)
  80 = 2*2*2*2*5   = (2*2*2*10)
  82 = 2*41        = (82)
  84 = 2*2*3*7     = (2*42)
  88 = 2*2*2*11    = (2*2*22)
  96 = 2*2*2*2*2*3 = (2*2*2*2*6)
		

Crossrefs

Products of elements of A275700.
The squarefree case is A371283.
The unsorted version is A371285.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    nn=100;
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1, {{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]];
    s=Table[Times@@Prime/@Divisors[n],{n,nn}];
    m=Max@@Table[Select[Range[2,k],prix[#] == Divisors[Last[prix[#]]]&],{k,nn}];
    Join@@Position[Table[Length[Select[facs[n], SubsetQ[s,Union[#]]&]],{n,m}],1]

A036451 Maximal value of d(x) (the number of divisors of x, A000005) if the binary order (see A029837) of x, the value g(x) = n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 80, 96, 120, 144, 168, 200, 240, 288, 360, 432, 504, 600, 720, 864, 1008, 1152, 1344, 1600, 1920, 2304, 2688, 3072, 3584, 4096, 4800, 5760, 6720, 7680, 8640, 10080, 11520, 13824, 16128, 18432, 20736, 23040
Offset: 0

Views

Author

Keywords

Comments

g(x) <= n can be replaced by g(x) = n.

Examples

			In the range of g(x) <= 5, the values of d(x) can be: 1, 2, 3, 4, 5, 6, 8 of which 8 is the maximal, so a(n) = a(g(x)) = 8.
		

Crossrefs

Programs

  • Mathematica
    Max /@ Table[DivisorSigma[0, Floor[2^(n - 1) + k]], {n, 0, 22}, {k, Ceiling[2^(n - 1)]}] (* Michael De Vlieger, May 10 2017 *)

Extensions

a(22)-a(32) from Alex Ratushnyak, Jun 06 2013
a(33)-a(49) from Giovanni Resta, Jun 06 2013
Previous Showing 11-20 of 52 results. Next