cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 146 results. Next

A145501 Dirichlet g.f.: (1+1/4^s+4/16^s)*zeta(s)^3.

Original entry on oeis.org

1, 3, 3, 7, 3, 9, 3, 13, 6, 9, 3, 21, 3, 9, 9, 25, 3, 18, 3, 21, 9, 9, 3, 39, 6, 9, 10, 21, 3, 27, 3, 43, 9, 9, 9, 42, 3, 9, 9, 39, 3, 27, 3, 21, 18, 9, 3, 75, 6, 18, 9, 21, 3, 30, 9, 39, 9, 9, 3, 63, 3, 9, 18, 67, 9, 27, 3, 21, 9, 27, 3, 78, 3, 9, 18, 21, 9, 27, 3, 75, 15, 9, 3, 63, 9, 9, 9, 39, 3
Offset: 1

Views

Author

N. J. A. Sloane, Mar 14 2009

Keywords

Comments

Dirichlet convolution of [1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,0,0,...] with A007425.

Crossrefs

Programs

  • Maple
    nmax := 100 :
    L := [1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,seq(0,i=1..nmax)] :
    MOBIUSi(%) :
    MOBIUSi(%) :
    MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    f[p_, e_] := (e + 1)*(e + 2)/2; f[2, 1] = 3; f[2, e_] := 3*(e - 2)*(e - 1) + 7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
  • PARI
    up_to = 10000
    t1=direuler(p=2, up_to, 1/(1-X)^3);
    t2=direuler(p=2, 2, 1+1*X^2+4*X^4, up_to);
    t3=dirmul(t1, t2);
    \\ Antti Karttunen, Sep 24 2017, after PARI-code in A145444.
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, if(f[i,2] == 1, 3, 3*(f[i,2]-2)*(f[i,2]-1)+7), (f[i,2]+1)*(f[i,2]+2)/2)); } \\ Amiram Eldar, Oct 25 2022

Formula

From Amiram Eldar, Oct 25 2022: (Start):
Multiplicative with a(2) = 3, a(2^e) = 3*(e-2)*(e-1)+7 for e > 1, and a(p^e) = (e+1)*(e+2)/2 if p > 2.
Sum_{k=1..n} a(k) ~ (3/4)*n*log(n)^2 + c_1*n*log(n) + c_2*n, where c_1 = 9*gamma/2 - 3*log(2)/2 - 3/2 and c_2 = 3/2 + 9*gamma*(gamma-1)/2 - 9*gamma*log(2)/2 - 9*gamma_1/2 + 3*log(2)/2 + 5*log(2)^2/2, where gamma is Euler's constant (A001620) and gamma_1 is the 1st Stieltjes constant (A082633). (End)

A343443 If n = Product (p_j^k_j) then a(n) = Product (k_j + 2), with a(1) = 1.

Original entry on oeis.org

1, 3, 3, 4, 3, 9, 3, 5, 4, 9, 3, 12, 3, 9, 9, 6, 3, 12, 3, 12, 9, 9, 3, 15, 4, 9, 5, 12, 3, 27, 3, 7, 9, 9, 9, 16, 3, 9, 9, 15, 3, 27, 3, 12, 12, 9, 3, 18, 4, 12, 9, 12, 3, 15, 9, 15, 9, 9, 3, 36, 3, 9, 12, 8, 9, 27, 3, 12, 9, 27, 3, 20, 3, 9, 12, 12, 9, 27, 3, 18
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 15 2021

Keywords

Comments

Inverse Moebius transform of A056671.
a(n) depends only on the prime signature of n (see formulas). - Bernard Schott, May 03 2021

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((#[[2]] + 2) & /@ FactorInteger[n]); Table[a[n], {n, 80}]
    a[n_] := Sum[If[GCD[d, n/d] == 1, DivisorSigma[0, d], 0], {d, Divisors[n]}]; Table[a[n], {n, 80}]
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)==1, numdiv(d))) \\ Andrew Howroyd, Apr 15 2021
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2)/(1-X)^2)[n], ", ")) \\ Vaclav Kotesovec, Feb 11 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A343443(n): return prod(e+2 for e in factorint(n).values()) # Chai Wah Wu, Feb 21 2025

Formula

a(n) = 2^omega(n) * tau_3(n) / tau(n), where omega = A001221, tau = A000005 and tau_3 = A007425.
a(n) = Sum_{d|n, gcd(d, n/d) = 1} tau(d).
From Bernard Schott, May 03 2021: (Start)
a(p^k) = k+2 for p prime, or signature [k].
a(A006881(n)) = 9 for signature [1, 1].
a(A054753(n)) = 12 for signature [2, 1].
a(A065036(n)) = 15 for signature [3, 1].
a(A085986(n)) = 16 for signature [2, 2].
a(A178739(n)) = 18 for signature [4, 1].
a(A143610(n)) = 20 for signature [3, 2].
a(A007304(n)) = 27 for signature [1, 1, 1]. (End)
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 1/p^s - 1/p^(2*s)). - Vaclav Kotesovec, Feb 11 2023
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = A000005(A064549(n)).
a(n) = A363194(A348018(n)). (End)

A034718 Dirichlet convolution of b_n=n with b_n with b_n.

Original entry on oeis.org

1, 6, 9, 24, 15, 54, 21, 80, 54, 90, 33, 216, 39, 126, 135, 240, 51, 324, 57, 360, 189, 198, 69, 720, 150, 234, 270, 504, 87, 810, 93, 672, 297, 306, 315, 1296, 111, 342, 351, 1200, 123, 1134, 129, 792, 810, 414, 141, 2160, 294, 900, 459, 936, 159, 1620, 495
Offset: 1

Views

Author

Keywords

Comments

Row sums of triangle A329323. - Omar E. Pol, Nov 21 2019

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 31 2018 *)
    f[p_, e_] := (e+1)*(e+2)*p^e/2; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 29 2020 *)

Formula

a(n) = Sum_{k*l*m = n} k*l*m, for positive integers k, l, m. This equals one sixth of the same sum over all integers. - Ralf Stephan, May 06 2005
Dirichlet g.f.: zeta^3(x-1).
Multiplicative with a(p^e) = p^e * binomial(e+2, 2). - Mitch Harris, Jun 27 2005
a(n) = n*A007425(n). Dirichlet convolution of A000027 by A038040. - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ (2*log(n)^2 + (12*gamma - 2)*log(n) + 12*gamma^2 - 6*gamma - 12*sg1 + 1) * n^2 / 8, where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Sep 11 2019
G.f.: Sum_{k>=1} k*tau(k)*x^k / (1 - x^k)^2, where tau = A000005. - Ilya Gutkovskiy, Sep 22 2020

A336570 Number of maximal sets of proper divisors d|n, d < n, all belonging to A130091 (numbers with distinct prime multiplicities) and forming a divisibility chain.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 5, 1, 2, 2, 2, 2, 3, 1, 4, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) sets for n = 36, 120, 144, 180 (ones not shown):
  {2,18}    {3,12,24}    {2,18,72}       {2,18}
  {3,12}    {5,20,40}    {3,9,18,72}     {3,12}
  {2,4,12}  {2,4,8,24}   {3,12,24,48}    {5,20}
  {3,9,18}  {2,4,8,40}   {3,12,24,72}    {5,45}
            {2,4,12,24}  {2,4,8,16,48}   {2,4,12}
            {2,4,20,40}  {2,4,8,24,48}   {2,4,20}
                         {2,4,8,24,72}   {3,9,18}
                         {2,4,12,24,48}  {3,9,45}
                         {2,4,12,24,72}
		

Crossrefs

A336569 is the version for chains containing n.
A336571 is the non-maximal version.
A000005 counts divisors.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336500 counts divisors of n in A130091 with quotient also in A130091.

Programs

  • Mathematica
    strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    strses[n_]:=If[n==1,{{}},Join@@Table[Append[#,d]&/@strses[d],{d,Select[Most[Divisors[n]],strsigQ]}]];
    Table[Length[fasmax[strses[n]]],{n,100}]

A061203 (tau<=)_5(n).

Original entry on oeis.org

1, 6, 11, 26, 31, 56, 61, 96, 111, 136, 141, 216, 221, 246, 271, 341, 346, 421, 426, 501, 526, 551, 556, 731, 746, 771, 806, 881, 886, 1011, 1016, 1142, 1167, 1192, 1217, 1442, 1447, 1472, 1497, 1672, 1677, 1802, 1807, 1882, 1957, 1982, 1987, 2337, 2352
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k <= n}|, i.e., (tau<=)_k(n) is number of solutions to x_1*x_2*...*x_k <= n, x_i > 0.
Partial sums of A061200.
Equals row sums of triangle A140705. - Gary W. Adamson, May 24 2008

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_3(n): A061201, (tau<=)_4(n): A061202, (tau<=)_6(n): A061204.
Cf. A140705.

Programs

  • Maple
    b:= proc(k, n) option remember; uses numtheory;
         `if`(k=1, 1, add(b(k-1, d), d=divisors(n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 0, b(5, n)+a(n-1)) end:
    seq(a(n), n=1..49);  # Alois P. Heinz, Feb 13 2022
  • Mathematica
    nmax = 50;
    tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#]*DivisorSigma[0, #] &], {n, 1, nmax}];
    Accumulate[Table[Sum[tau4[[d]], {d, Divisors[n]}], {n, nmax}]] (* Vaclav Kotesovec, Sep 10 2018 *)

Formula

(tau<=)k(n) = Sum{i=1..n} tau_k(i).
a(n) = Sum_{k=1..n} tau_{4}(k) * floor(n/k), where tau_{4} is A007426. - Enrique Pérez Herrero, Jan 23 2013
a(n) ~ n*(log(n)^4/24 + (5*g/6 - 1/6)*log(n)^3 + 10*g1^2 + (5*g^2 - 5*g/2 - 5*g1/2 + 1/2)*log(n)^2 + (10*g^3 - 10*g^2 + (5 - 20*g1)*g + 5*g1 + 5*g2/2 - 1)*log(n) + 5*g^4 - 10*g^3 + (10 - 30*g1)*g^2 + (20*g1 + 10*g2 - 5)*g - 5*g1 - 5*g2/2 - 5*g3/6 + 1), where g is the Euler-Mascheroni constant A001620 and g1, g2, g3 are the Stieltjes constants, see A082633, A086279 and A086280. - Vaclav Kotesovec, Sep 10 2018

A061204 (tau<=)_6(n).

Original entry on oeis.org

1, 7, 13, 34, 40, 76, 82, 138, 159, 195, 201, 327, 333, 369, 405, 531, 537, 663, 669, 795, 831, 867, 873, 1209, 1230, 1266, 1322, 1448, 1454, 1670, 1676, 1928, 1964, 2000, 2036, 2477, 2483, 2519, 2555, 2891, 2897, 3113, 3119, 3245, 3371, 3407, 3413
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k<=n}|, i.e. (tau<=)_k(n) is number of solutions to x_1*x_2*...*x_k<=n, x_i>0.

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_3(n): A061201, (tau<=)_4(n): A061202, (tau<=)_5(n): A061203.

Programs

  • Mathematica
    nmax = 50; tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#]*DivisorSigma[0, #] &], {n, 1, nmax}]; tau5 = Table[Sum[tau4[[d]], {d, Divisors[n]}], {n, nmax}]; Accumulate[Table[Sum[tau5[[d]], {d, Divisors[n]}], {n, nmax}]] (* Vaclav Kotesovec, Sep 10 2018 *)

Formula

(tau<=)k(n)=Sum{i=1..n} tau_k(i). a(n)=partial sums of A034695.
a(n) = Sum_{k=1..n} tau_{5}(k) * floor(n/k), where tau_{5} is A061200. - Enrique Pérez Herrero, Jan 23 2013
a(n) ~ n*(log(n)^5/120 + (g/4 - 1/24)*log(n)^4 + (5*g^2/2 - g - g1 + 1/6)*log(n)^3 + (10*g^3 - 15*g^2/2 + (3 - 15*g1)*g + 3*g1 + 3*g2/2 - 1/2)*log(n)^2 + (15*g^4 - 20*g^3 + (15 - 60*g1)*g^2 + (30*g1 + 15*g2 - 6)*g + 15*g1^2 - 6*g1 - 3*g2 - g3 + 1)*log(n) + 6*g^5 - 15*g^4 + (20 - 60*g1)*g^3 + (60*g1 + 30*g2 - 15)*g^2 + (60*g1^2 - 30*g1 - 15*g2 - 5*g3 + 6)*g - 15*g1^2 + g1*(6 - 15*g2) + 3*g2 + g3 + g4/4 - 1), where g is the Euler-Mascheroni constant A001620 and g1, g2, g3, g4 are the Stieltjes constants, see A082633, A086279, A086280 and A086281. - Vaclav Kotesovec, Sep 10 2018

A085782 Numbers that can be written as a product of triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 9, 10, 15, 18, 21, 27, 28, 30, 36, 45, 54, 55, 60, 63, 66, 78, 81, 84, 90, 91, 100, 105, 108, 120, 126, 135, 136, 150, 153, 162, 165, 168, 171, 180, 189, 190, 198, 210, 216, 225, 231, 234, 243, 252, 253, 270, 273, 276, 280, 300, 315, 324, 325, 330, 351
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

These are the numbers that appear at least once in A007425 (the number of ordered factorizations of n as n = r*s*t). - Matthew Vandermast, Jul 26 2003
Contains A085780 as a subsequence (exactly 2 factors); 27,54,81,... are the first elements in the complement. - M. F. Hasler, Apr 03 2008
The number of r-orthotopes of any size contained in a n1*n2*...*nr r-orthotope, where a(n)=t(n1)*t(n2)*...*t(nr) and t(k)=A000217(k). - Dimitri Boscainos, Aug 27 2015

Examples

			54 = 6*3*3 = t(3)*t(2)*t(2).
		

Crossrefs

Extensions

More terms from Max Alekseyev and Jon E. Schoenfield, Sep 04 2009

A111217 d_7(n), tau_7(n), number of ordered factorizations of n as n = rstuvwx (7-factorizations).

Original entry on oeis.org

1, 7, 7, 28, 7, 49, 7, 84, 28, 49, 7, 196, 7, 49, 49, 210, 7, 196, 7, 196, 49, 49, 7, 588, 28, 49, 84, 196, 7, 343, 7, 462, 49, 49, 49, 784, 7, 49, 49, 588, 7, 343, 7, 196, 196, 49, 7, 1470, 28, 196, 49, 196, 7, 588, 49, 588, 49, 49, 7, 1372, 7, 49, 196, 924, 49, 343, 7, 196
Offset: 1

Views

Author

Gerald McGarvey, Oct 25 2005

Keywords

Crossrefs

Cf. tau_k(n) for k>=2: A000005, A007425, A007426, A061200, A034695, A111218 - A111221, A111306.
Column k=7 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 7], {n, 68}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 7], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,x,numdiv(x)))))),","))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+6, 6)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

Dirichlet convolution of A000012 with A034695, or of A000005 with A061200, or of A007425 with A007426. Dirichlet g.f. zeta^7(s). - R. J. Mathar, Apr 01 2011
G.f.: Sum_{k>=1} tau_6(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+6,6). - Amiram Eldar, Sep 13 2020

A111219 d_9(n), tau_9(n), number of ordered factorizations of n as n = rstuvwxyz (9-factorizations).

Original entry on oeis.org

1, 9, 9, 45, 9, 81, 9, 165, 45, 81, 9, 405, 9, 81, 81, 495, 9, 405, 9, 405, 81, 81, 9, 1485, 45, 81, 165, 405, 9, 729, 9, 1287, 81, 81, 81, 2025, 9, 81, 81, 1485, 9, 729, 9, 405, 405, 81, 9, 4455, 45, 405, 81, 405, 9, 1485, 81, 1485, 81, 81, 9, 3645, 9, 81, 405, 3003, 81
Offset: 1

Views

Author

Gerald McGarvey, Oct 25 2005

Keywords

Crossrefs

Cf. tau_2(n)...tau_6(n): A000005, A007425, A007426, A061200, A034695.
Column k=9 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 9], {n, 65}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 9], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,x,numdiv(x)))))))),","))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+8, 8)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_8(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+8,8). - Amiram Eldar, Sep 13 2020

A111220 d_10(n), tau_10(n), number of ordered factorizations of n as n = rstuvwxyza (10-factorizations).

Original entry on oeis.org

1, 10, 10, 55, 10, 100, 10, 220, 55, 100, 10, 550, 10, 100, 100, 715, 10, 550, 10, 550, 100, 100, 10, 2200, 55, 100, 220, 550, 10, 1000, 10, 2002, 100, 100, 100, 3025, 10, 100, 100, 2200, 10, 1000, 10, 550, 550, 100, 10, 7150, 55, 550, 100, 550, 10, 2200, 100
Offset: 1

Views

Author

Gerald McGarvey, Oct 25 2005

Keywords

Crossrefs

Cf. tau_2(n)...tau_6(n): A000005, A007425, A007426, A061200, A034695.
Column k=10 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 10], {n, 55}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 10], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,p,sumdiv(p,x,numdiv(x))))))))),","))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+9, 9)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_9(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+9,9). - Amiram Eldar, Sep 13 2020
Previous Showing 61-70 of 146 results. Next