cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 61 results. Next

A322103 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} sigma_k(d).

Original entry on oeis.org

1, 1, 3, 1, 4, 3, 1, 6, 5, 6, 1, 10, 11, 11, 3, 1, 18, 29, 27, 7, 9, 1, 34, 83, 83, 27, 20, 3, 1, 66, 245, 291, 127, 66, 9, 10, 1, 130, 731, 1091, 627, 290, 51, 26, 6, 1, 258, 2189, 4227, 3127, 1494, 345, 112, 18, 9, 1, 514, 6563, 16643, 15627, 8330, 2403, 668, 102, 28, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  1,   1,   1,    1,     1,     1,  ...
  3,   4,   6,   10,    18,    34,  ...
  3,   5,  11,   29,    83,   245,  ...
  6,  11,  27,   83,   291,  1091,  ...
  3,   7,  27,  127,   627,  3127,  ...
  9,  20,  66,  290,  1494,  8330,  ...
		

Crossrefs

Columns k=0..3 give A007425, A007429, A007433, A321140.
Cf. A109974, A321141 (diagonal), A356045.

Programs

  • Mathematica
    Table[Function[k, Sum[DivisorSigma[k, d], {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[DivisorSigma[k, j] x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, d^k*numdiv(n/d))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} sigma_k(j)*x^j/(1 - x^j).
A(n,k) = Sum_{d|n} d^k*tau(n/d).

A322655 Numerator of (Sum_{d|n} sigma(d)) / sigma(n).

Original entry on oeis.org

1, 4, 5, 11, 7, 5, 9, 26, 18, 14, 13, 55, 15, 3, 35, 57, 19, 24, 21, 11, 45, 13, 25, 13, 38, 10, 29, 99, 31, 35, 33, 40, 65, 38, 21, 198, 39, 7, 75, 91, 43, 15, 45, 143, 21, 25, 49, 285, 22, 152, 95, 165, 55, 29, 91, 39, 21, 62, 61, 55, 63, 11, 81, 247, 5, 65
Offset: 1

Views

Author

Jaroslav Krizek, Dec 22 2018

Keywords

Comments

Numerator of A007429(n) / A000203(n).
Also numerator of Sum_{d|n} (sigma(d) / sigma(n)).

Examples

			For n = 4; a(4) = numerator((Sum_{d|4} sigma(d)) / sigma(4)) = numerator((1 + 3 + 7) / (1 + 2 + 4)) = numerator(11/7) = 11.
		

Crossrefs

Cf. A000203, A007429, A319296, A221219, A322656 (denominator).

Programs

  • Magma
    [Numerator(&+[SumOfDivisors(d): d in Divisors(n)] /  SumOfDivisors(n)): n in [1..1000]];
    
  • Mathematica
    Table[Numerator[Sum[DivisorSigma[1, d], {d, Divisors[n]}] / DivisorSigma[1, n]], {n, 1, 100}] (* Vaclav Kotesovec, Dec 22 2018 *)
  • PARI
    a(n) = numerator(sumdiv(n, d, sigma(d))/sigma(n)); \\ Michel Marcus, Dec 22 2018

Formula

a(n) = A007429(n) / gcd(A000203(n), A007429(n)). - Antti Karttunen, Nov 15 2021

A322656 Denominator of (Sum_{d|n} sigma(d)) / sigma(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 3, 8, 15, 13, 9, 12, 28, 14, 2, 24, 31, 18, 13, 20, 6, 32, 9, 24, 6, 31, 7, 20, 56, 30, 18, 32, 21, 48, 27, 16, 91, 38, 5, 56, 45, 42, 8, 44, 84, 13, 18, 48, 124, 19, 93, 72, 98, 54, 15, 72, 20, 16, 45, 60, 24, 62, 8, 52, 127, 4, 36, 68, 126, 96
Offset: 1

Views

Author

Jaroslav Krizek, Dec 22 2018

Keywords

Comments

Denominator of A007429(n) / A000203(n).
Also denominator of Sum_{d|n} (sigma(d) / sigma(n)).

Examples

			For n = 4; a(4) = denominator((Sum_{d|4} sigma(d)) / sigma(4)) = denominator((1 + 3 + 7) / (1 + 2 + 4)) = denominator(11/7) = 7.
		

Crossrefs

Cf. A000203, A007429, A319296, A221219, A322655 (numerator).

Programs

  • Magma
    [Denominator(&+[SumOfDivisors(d): d in Divisors(n)] /  SumOfDivisors(n)): n in [1..1000]];
    
  • Mathematica
    Table[Denominator[Sum[DivisorSigma[1, d], {d, Divisors[n]}] / DivisorSigma[1, n]], {n, 1, 100}] (* Vaclav Kotesovec, Dec 22 2018 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, sigma(d))/sigma(n)); \\ Michel Marcus, Dec 22 2018

Formula

a(n) = 1 for numbers in A221219.
a(n) = A000203(n) / gcd(A000203(n), A007429(n)). - Antti Karttunen, Nov 15 2021

A328485 Dirichlet g.f.: zeta(s)^2 * zeta(s-1) / zeta(2*s-1).

Original entry on oeis.org

1, 4, 5, 9, 7, 20, 9, 18, 15, 28, 13, 45, 15, 36, 35, 35, 19, 60, 21, 63, 45, 52, 25, 90, 33, 60, 43, 81, 31, 140, 33, 68, 65, 76, 63, 135, 39, 84, 75, 126, 43, 180, 45, 117, 105, 100, 49, 175, 59, 132, 95, 135, 55, 172, 91, 162, 105, 124, 61, 315, 63, 132, 135, 133, 105
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Inverse Moebius transform of A034448.
Dirichlet convolution of A055615 with A064840.

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(d)*tau(n/d)*sigma(n/d)*d, d=divisors(n)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Oct 16 2019
  • Mathematica
    Table[n DivisorSum[n, MoebiusMu[n/#] DivisorSigma[0, #] DivisorSigma[1, #]/# &], {n, 1, 65}]
    nmax = 65; CoefficientList[Series[Sum[DivisorSum[k, # &, CoprimeQ[#, k/#] &] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := (p^(e + 1) - p)/(p - 1) + e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 10 2023 *)
  • PARI
    a(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); prod(i = 1, #p, (p[i]^(e[i] + 1) - p[i])/(p[i] - 1) + e[i] + 1);} \\ Amiram Eldar, Feb 10 2023

Formula

G.f.: Sum_{k>=1} usigma(k) * x^k / (1 - x^k), where usigma = A034448.
a(n) = Sum_{d|n} usigma(d).
a(n) = n * Sum_{d|n} mu(n/d) * tau(d) * sigma(d) / d, where mu = A008683, tau = A000005 and sigma = A000203.
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / (72 * zeta(3)). - Vaclav Kotesovec, Oct 17 2019
From Amiram Eldar, Feb 10 2023: (Start)
a(n) = Sum_{d|n} Sum_{d'|n, gcd(d, d')=1} d'.
Multiplicative with a(p^e) = (p^(e+1)-p)/(p-1) + e + 1. (End)

A344060 a(n) = Sum_{d|n} sigma(d)^n.

Original entry on oeis.org

1, 10, 65, 2483, 7777, 2990810, 2097153, 2568661988, 10604761518, 3570527751850, 743008370689, 232227195048256531, 793714773254145, 21035724521219881850, 504857283427304833025, 727429690188773950335429, 2185911559738696531969, 43567528891100073055151954340, 5242880000000000000000001
Offset: 1

Views

Author

Seiichi Manyama, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[1 , #]^n &]; Array[a, 19] (* Amiram Eldar, May 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d)^n);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (sigma(k)*x)^k/(1-(sigma(k)*x)^k)))

Formula

G.f.: Sum_{k >= 1} (sigma(k) * x)^k/(1 - (sigma(k) * x)^k).
If p is prime, a(p) = 1 + (p+1)^p.

A130540 Triangle read by rows T(n,k) in which column k lists the terms of A000203 interspersed with (k-1) zeros, 1 <= k <= n.

Original entry on oeis.org

1, 3, 1, 4, 0, 1, 7, 3, 0, 1, 6, 0, 0, 0, 1, 12, 4, 3, 0, 0, 1, 8, 0, 0, 0, 0, 0, 1, 15, 7, 0, 3, 0, 0, 0, 1, 13, 0, 4, 0, 0, 0, 0, 0, 1, 18, 6, 0, 0, 3, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 28, 12, 7, 4, 0, 3, 0, 0, 0, 0, 0, 1, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 24, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 03 2007

Keywords

Comments

The original definition was: A127093 * A125093^(-1).
Left border = A000203, sigma(n): (1, 3, 4, 7, 6, ...). Row sums = A007429: (1, 4, 5, 11, 7, 20, 9, ...); = inverse Moebius transform applied to sigma(n); (i.e., inverse Moebius transform applied twice to natural numbers).
T(n,k) is the total number of parts congruent to 0 mod k in the partitions of n into equal parts. - Omar E. Pol, Nov 19 2019
From Omar E. Pol, Jan 01 2020: (Start)
Conjecture 1: the sum of odd-indexed terms in row n equals A327096(n).
Conjecture 2: the sum of even-indexed terms in row n equals the n-th term of the sequence formed by A000004 and A007429 interleaved.
Conjecture 3: alternating row sums give A288417. (End)

Examples

			First few rows of the triangle are:
   1;
   3,  1;
   4,  0, 1;
   7,  3, 0, 1;
   6,  0, 0, 0, 1;
  12,  4, 3, 0, 0, 1;
   8,  0, 0, 0, 0, 0, 1;
  15,  7, 0, 3, 0, 0, 0, 1;
  13,  0, 4, 0, 0, 0, 0, 0, 1;
  18,  6, 0, 0, 3, 0, 0, 0, 0, 1;
  12,  0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  28, 12, 7, 4, 0, 3, 0, 0, 0, 0, 0, 1;
  14,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  24,  8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1;
  24,  0, 6, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  31, 15, 0, 7, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1;
...
Extended by _Omar E. Pol_, Nov 19 2019
		

Crossrefs

Formula

A127093 * A125093^(-1), as infinite lower triangular matrices.

Extensions

New name and more terms from Omar E. Pol, Nov 19 2019

A134699 Triangle read by rows: A051731^2 * A000012.

Original entry on oeis.org

1, 3, 1, 3, 1, 1, 6, 3, 1, 1, 3, 1, 1, 1, 1, 9, 5, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 10, 6, 3, 3, 1, 1, 1, 1, 6, 3, 3, 1, 1, 1, 1, 1, 1, 9, 5, 3, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 18, 12, 8, 5, 3, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 06 2007

Keywords

Comments

Left column = A007425.
Row sums = A007429: (1, 4, 5, 11, 7, 20, ...).

Examples

			First few rows of the triangle:
   1;
   3, 1;
   3, 1, 1;
   6, 3, 1, 1;
   3, 1, 1, 1, 1;
   9, 5, 3, 1, 1, 1;
   3, 1, 1, 1, 1, 1, 1;
  10, 6, 3, 3, 1, 1, 1, 1;
  ...
		

Crossrefs

Formula

A051731^2 * A000012 = A127170 * A000012, as infinite lower triangular matrices.

Extensions

More terms from Jinyuan Wang, Apr 29 2025

A145378 a(n) = Sum_{d|n} sigma(d) - 2*Sum_{2c|n} sigma(c) + 4*Sum_{4b|n} sigma(b).

Original entry on oeis.org

1, 2, 5, 7, 7, 10, 9, 20, 18, 14, 13, 35, 15, 18, 35, 49, 19, 36, 21, 49, 45, 26, 25, 100, 38, 30, 58, 63, 31, 70, 33, 110, 65, 38, 63, 126, 39, 42, 75, 140, 43, 90, 45, 91, 126, 50, 49, 245, 66, 76, 95, 105, 55, 116, 91, 180, 105, 62, 61, 245, 63, 66, 162, 235, 105, 130, 69
Offset: 1

Views

Author

N. J. A. Sloane, Mar 12 2009

Keywords

Comments

Dirichlet convolution of [1,-2,0,4,0,0,0,...] with A007429.

Crossrefs

Programs

  • Maple
    with(numtheory); g:=proc(n) local d,c,b,t0,t1,t2,t3;
    t1:=divisors(n);
    t0:=add( sigma(d), d in t1);
    t2:=0; for d in t1 do if d mod 2 = 0 then t2:=t2+sigma(d/2); fi; od:
    t3:=0; for d in t1 do if d mod 4 = 0 then t3:=t3+sigma(d/4); fi; od:
    t0-2*t2+4*t3; end;
    [seq(g(n),n=1..100)];
    # alternative
    read("transforms") : nmax := 100 :
    L27 := [seq(i,i=1..nmax) ];
    L := [1,-2,0,4,seq(0,i=1..nmax)] ;
    DIRICHLET(L27,L) :
    MOBIUSi(%) :
    MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    a[n_] := Sum[DivisorSigma[1, d] - 2 Boole[Mod[d, 2] == 0] DivisorSigma[1, d/2] + 4 Boole[Mod[d, 4] == 0] DivisorSigma[1, d/4], {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Apr 04 2020 *)
    f[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; f[2, e_] := 2^(e + 2) - 3*(e + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 2^(f[i,2]+2) - 3*(f[i,2]+1),  (f[i,1]*(f[i,1]^(f[i,2]+1)-1) - (f[i,1]-1)*(f[i,2]+1))/(f[i,1]-1)^2)); } \\ Amiram Eldar, Oct 25 2022

Formula

Dirichlet g.f.: (1-2/2^s+4/4^s)*(zeta(s))^2*zeta(s-1).
From Amiram Eldar, Oct 25 2022: (Start)
Multiplicative with a(2^e) = 2^(e+2) - 3*(e+1) and a(p^e) = (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2 if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/96 = 1.01467803... (A300707). (End)

A145396 a(n) = Sum_{d|n} sigma(d) + 3*Sum_{2c|n} sigma(c).

Original entry on oeis.org

1, 7, 5, 23, 7, 35, 9, 59, 18, 49, 13, 115, 15, 63, 35, 135, 19, 126, 21, 161, 45, 91, 25, 295, 38, 105, 58, 207, 31, 245, 33, 291, 65, 133, 63, 414, 39, 147, 75, 413, 43, 315, 45, 299, 126, 175, 49, 675, 66, 266, 95, 345, 55, 406, 91, 531, 105, 217, 61, 805, 63, 231, 162, 607
Offset: 1

Views

Author

N. J. A. Sloane, Mar 13 2009

Keywords

Comments

Dirichlet convolution of [1,3,0,0,0,0,0,...] and A007429.

Crossrefs

Cf. A007429.

Programs

  • Maple
    with(numtheory);
    g:=proc(n)
    local d,c,b,t0,t1,t2,t3;
    t1:=divisors(n);
    t0:=add( sigma(d), d in t1);
    t2:=0;
    for d in t1 do if d mod 2 = 0 then t2:=t2+sigma(d/2); fi; od:
    t0+3*t2;
    end;
    [seq(g(n),n=1..100)];
    # alternative
    nmax := 100 :
    L27 := [seq(i,i=1..nmax) ];
    L := [1,3,seq(0,i=1..nmax)] ;
    MOBIUSi(%) ;
    MOBIUSi(%) ;
    DIRICHLET(%,L27) ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    a[n_] := Sum[DivisorSigma[1, d] + 3 Boole[Mod[d, 2] == 0] DivisorSigma[1, d/2], {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Apr 04 2020 *)
    f[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; f[2, e_] := 5*2^(e + 1) - 4*e - 9; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 5*2^(f[i,2]+1) - 4*f[i,2] - 9,  (f[i,1]*(f[i,1]^(f[i,2]+1)-1) - (f[i,1]-1)*(f[i,2]+1))/(f[i,1]-1)^2)); } \\ Amiram Eldar, Oct 25 2022

Formula

Dirichlet g.f.: (1+3/2^s)*zeta(s-1)*(zeta(s))^2.
From Amiram Eldar, Oct 25 2022: (Start):
Multiplicative with a(2^e) = 5*2^(e+1)-4*e-9, and a(p^e) = (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2 if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 7*Pi^4/288 = 2.367582... . (End)

A206028 a(n) is the sum of distinct values of sigma(d) where d runs over the divisors of n and sigma = A000203.

Original entry on oeis.org

1, 4, 5, 11, 7, 20, 9, 26, 18, 28, 13, 55, 15, 36, 35, 57, 19, 72, 21, 77, 45, 52, 25, 130, 38, 60, 58, 99, 31, 140, 33, 120, 65, 76, 63, 198, 39, 84, 75, 182, 43, 180, 45, 143, 126, 100, 49, 285, 66, 152, 95, 165, 55, 232, 91, 234, 105, 124, 61, 385, 63, 132, 162, 247, 105, 248
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2012

Keywords

Comments

Sequence is not the same as A007429: a(66) = 248, A007429(66) = 260. Number 66 is the smallest number with at least two divisors d with the same sigma(d); see A206030.
In A007429 all values of sigma(d) of the divisors d of n are included in the sum with repetitions allowed. In this sequence only the distinct values of sigma(d) of the divisors d of n are included in the sum.
If a term is a prime p when n = 2^j then p = 2^(j+2)-(j+3) is also a term of A099440 (primes of the form 2^n-n-1). Greater of twin primes are terms. - Metin Sariyar, Apr 03 2020

Examples

			For n=6 -> divisors d of 6: 1,2,3,6; corresponding values of sigma(d): 1,3,4,12; a(6) = Sum of k = 1+3+4+12 = 20.
For n=66 -> divisors d of 66: 1,2,3,6,11,22,33,66; corresponding values of sigma(d): 1,3,4,12,12,36,48,144; a(66) = Sum of k = 1+3+4+12+36+48+144 = 248 (note that only one twelve is added.).
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Union[DivisorSigma[1, Divisors[n]]]], {n, 100}] (* T. D. Noe, Feb 10 2012 *)
  • PARI
    a(n)={vecsum(Set(apply(sigma, divisors(n))))} \\ Andrew Howroyd, Aug 01 2018

Formula

a(p) = p+2, a(pq) = (p+2)*(q+2) for p, q = distinct primes.
a(n) = A184387(n) - A206029(n) = A000217(A000203(n)) - A206029(n).
a(2^n) = 2^(n+2) - (n+3). - Metin Sariyar, Apr 09 2020

Extensions

Name clarified by David A. Corneth, Aug 01 2018
a(62)-a(66) from Andrew Howroyd, Aug 01 2018
Previous Showing 31-40 of 61 results. Next