Original entry on oeis.org
0, 3, 14, 63, 324, 1955, 13698, 109599, 986408, 9864099, 108505110, 1302061343, 16926797484, 236975164803, 3554627472074, 56874039553215, 966858672404688, 17403456103284419, 330665665962403998, 6613313319248079999, 138879579704209680020, 3055350753492612960483
Offset: 1
N. J. A. Sloane, based on a message from a correspondent who wishes to remain anonymous, Dec 21 2003
To calculate a determinant of order 3:
|a b c| |e f| |d f| |d e|
D = |d e f| = a * |h i| - b * |g i| + c * |g h| =
|g h i|
= a * (e*i - f*h) - b * (d*i - f*g) + c * (d*h - e*g).
There are 9 multiplications * and 5 additions (+ or -), so 14 operations and a(3) = 14. - _Bernard Schott_, Apr 21 2019
- Alois P. Heinz, Table of n, a(n) for n = 1..170
- C. Dubbs and D. Siegel, Computing determinants, College Math. J., 18 (1987), 48-49.
- A. R. Pargeter, The vanishing coffee morning, Math. Gaz., 76 (1992), 386-387.
- P. G. Sawtelle, The ubiquitous e, Math. Mag., 49 (1976), 244-245. [_N. J. A. Sloane_, Jan 29 2009]
-
a:= proc(n) a(n):= n*(a(n-1)+2)-1: end: a(1):= 0:
seq (a(n), n=1..30); # Alois P. Heinz, May 25 2012
-
Table[E*Gamma[n+1, 1] - 2, {n, 1, 30}] (* Jean-François Alcover, May 18 2018 *)
Original entry on oeis.org
2, 3, 6, 17, 66, 327, 1958, 13701, 109602, 986411, 9864102, 108505113, 1302061346, 16926797487, 236975164806, 3554627472077, 56874039553218, 966858672404691, 17403456103284422, 330665665962404001, 6613313319248080002
Offset: 0
-
a:= proc(n) a(n):= `if`(n=0, 2, n*a(n-1)-n+2) end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 17 2014
-
f[n_] := n*(f[n - 1] - 1) + 2;f[0]=2; ff[n_]:=(1/(1+n))(1+E*Gamma[1+n, 1]-E*(n^2)*Gamma[1+n, 1]+E*n*Gamma[2+n, 1]) (Spindler)
Table[FunctionExpand[Gamma[n, 1] E] + 1, {n, 2, 29}] (* Vincenzo Librandi, Feb 17 2014 *)
A121662
Triangle read by rows: T(i,j) for the recurrence T(i,j) = (T(i-1,j) + 1)*i.
Original entry on oeis.org
1, 4, 2, 15, 9, 3, 64, 40, 16, 4, 325, 205, 85, 25, 5, 1956, 1236, 516, 156, 36, 6, 13699, 8659, 3619, 1099, 259, 49, 7, 109600, 69280, 28960, 8800, 2080, 400, 64, 8, 986409, 623529, 260649, 79209, 18729, 3609, 585, 81, 9, 9864100, 6235300, 2606500, 792100, 187300, 36100, 5860, 820, 100, 10
Offset: 1
Triangle T(i,j) begins:
1
4 2
15 9 3
64 40 16 4
325 205 85 25 5
1956 1236 516 156 36 6
13699 8659 3619 1099 259 49 7
...
-
T:= proc(i, j) option remember;
`if`(j<1 or j>i, 0, T(i-1, j)*i+i)
end:
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Jun 22 2022
-
Table[Sum[m!/(m - i)!, {i, n}], {m, 9}, {n, m, 1, -1}] // Flatten (* Michael De Vlieger, Apr 22 2017 *)
(* Sum-free code *)
b[j_] = If[j == 0, 0, Floor[j! E - 1]];
T[i_, j_] = b[i] - i! b[j - 1]/(j - 1)!;
Table[T[i, j], {i, 24}, {j, i}] // Flatten
(* Manfred Boergens, Jun 22 2022 *)
A337085
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) = n! * Sum_{j=0..n} j^k/j!.
Original entry on oeis.org
1, 0, 2, 0, 1, 5, 0, 1, 4, 16, 0, 1, 6, 15, 65, 0, 1, 10, 27, 64, 326, 0, 1, 18, 57, 124, 325, 1957, 0, 1, 34, 135, 292, 645, 1956, 13700, 0, 1, 66, 345, 796, 1585, 3906, 13699, 109601, 0, 1, 130, 927, 2404, 4605, 9726, 27391, 109600, 986410, 0, 1, 258, 2577, 7804, 15145, 28926, 68425, 219192, 986409, 9864101
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, 0, ...
2, 1, 1, 1, 1, 1, 1, ...
5, 4, 6, 10, 18, 34, 66, ...
16, 15, 27, 57, 135, 345, 927, ...
65, 64, 124, 292, 796, 2404, 7804, ...
326, 325, 645, 1585, 4605, 15145, 54645, ...
1957, 1956, 3906, 9726, 28926, 98646, 374526, ...
-
T[n_, k_] := n! * Sum[If[j == k == 0, 1, j^k]/j!, {j, 0, n}]; Table[T[k, n-k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
A368574
a(n) = n! * Sum_{k=0..n} binomial(k+2,3) / k!.
Original entry on oeis.org
0, 1, 6, 28, 132, 695, 4226, 29666, 237448, 2137197, 21372190, 235094376, 2821132876, 36674727843, 513446190362, 7701692856110, 123227085698576, 2094860456876761, 37707488223782838, 716442276251875252, 14328845525037506580, 300905756025787639951, 6619926632567328080946
Offset: 0
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(x*sum(k=0, 2, binomial(2, k)*x^k/(k+1)!)*exp(x)/(1-x))))
A368575
a(n) = n! * Sum_{k=0..n} binomial(k+3,4) / k!.
Original entry on oeis.org
0, 1, 7, 36, 179, 965, 5916, 41622, 333306, 3000249, 30003205, 330036256, 3960436437, 51485675501, 720799459394, 10811991893970, 172991870307396, 2940861795230577, 52935512314156371, 1005774733968978364, 20115494679379576135, 422425388266971109461
Offset: 0
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(x*sum(k=0, 3, binomial(3, k)*x^k/(k+1)!)*exp(x)/(1-x))))
A067273
a(n) = n*(a(n-1)*2+1), a(0) = 0.
Original entry on oeis.org
0, 1, 6, 39, 316, 3165, 37986, 531811, 8508984, 153161721, 3063234430, 67391157471, 1617387779316, 42052082262229, 1177458303342426, 35323749100272795, 1130359971208729456, 38432239021096801521, 1383560604759484854774, 52575302980860424481431, 2103012119234416979257260, 88326509007845513128804941
Offset: 0
-
a := n -> n*hypergeom([1,1-n],[],-2):
seq(simplify(a(n)), n=0..17); # Peter Luschny, May 09 2017
-
FoldList[2 #1*#2 + #2 &, 0, Range[19]] (* Robert G. Wilson v, Jul 07 2012 *)
a[n_] := 2^(n-1)*Sqrt[E]*n*Gamma[n,1/2];
Table[a[n] // FullSimplify, {n,0,20}] (* Gerry Martens, Jun 28 2015 *)
nxt[{n_,a_}]:={n+1,(n+1)(2*a+1)}; NestList[nxt,{0,0},20][[;;,2]] (* Harvey P. Dale, Jun 26 2023 *)
A121757
Triangle read by rows: multiply Pascal's triangle by 1,2,6,24,120,720,... = A000142.
Original entry on oeis.org
1, 1, 2, 1, 4, 6, 1, 6, 18, 24, 1, 8, 36, 96, 120, 1, 10, 60, 240, 600, 720, 1, 12, 90, 480, 1800, 4320, 5040, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880, 1, 18, 216, 2016, 15120, 90720, 423360, 1451520
Offset: 0
Row 6 is 1*1 5*2 10*6 10*24 5*120 1*720.
From _Vincenzo Librandi_, Dec 16 2012: (Start)
Triangle begins:
1,
1, 2,
1, 4, 6,
1, 6, 18, 24,
1, 8, 36, 96, 120,
1, 10, 60, 240, 600, 720,
1, 12, 90, 480, 1800, 4320, 5040,
1, 14, 126, 840, 4200, 15120, 35280, 40320,
1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880 etc.
(End)
-
a121757 n k = a121757_tabl !! n !! k
a121757_row n = a121757_tabl !! n
a121757_tabl = iterate
(\xs -> zipWith (+) (xs ++ [0]) (zipWith (*) [1..] ([0] ++ xs))) [1]
-- Reinhard Zumkeller, Mar 06 2014
-
Flatten[Table[n!(k+1)/(n-k)!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Apr 25 2011 *)
-
A000142(n)={ return(n!) ; } A007318(n,k)={ return(binomial(n,k)) ; } A121757(n,k)={ return(A007318(n,k)*A000142(k+1)) ; } { for(n=0,12, for(k=0,n, print1(A121757(n,k),",") ; ); ) ; } \\ R. J. Mathar, Sep 02 2006
A126062
Array read by antidiagonals: see A128195 for details.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 15, 1, 1, 16, 65, 64, 1, 1, 25, 175, 511, 325, 1, 1, 36, 369, 2020, 4743, 1956, 1, 1, 49, 671, 5629, 27313, 52525, 13699, 1, 1, 64, 1105, 12736, 100045, 440896, 683657, 109600, 1, 1, 81, 1695, 25099, 280581, 2122449, 8390875, 10256775
Offset: 0
Array begins:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1
[1] 1, 4, 15, 64, 325, 1956, 13699, 109600, 986409
[2] 1, 9, 65, 511, 4743, 52525, 683657, 10256775, 174369527
[3] 1, 16, 175, 2020, 27313, 440896, 8390875, 184647364, 4616348125
[4] 1, 25, 369, 5629, 100045, 2122449, 53163625, 1542220261, 50895431301
[5] 1, 36, 671, 12736, 280581, 7376356, 229151411, 8252263296, 338358810761
The second row counts the variations of n distinct objects
A007526.
The second column is sequence
A000290. The third column is sequence
A005917.
-
A126062 := proc(k,n) if n = 0 then 1 ; else (n*k+1)*(A126062(k,n-1)+k^n) ; fi ; end: for diag from 0 to 10 do for k from diag to 0 by -1 do n := diag-k ; printf("%d, ",A126062(k,n)) ; od ; od ; # R. J. Mathar, May 18 2007
-
a[, 0] = 1; a[k, n_] := a[k, n] = (n*k+1)*(a[k, n-1]+k^n); Table[a[k-n, n], {k, 0, 10}, {n, 0, k}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
A180255
a(n) = n^2 * a(n-1) + n, a(0)=0.
Original entry on oeis.org
0, 1, 6, 57, 916, 22905, 824586, 40404721, 2585902152, 209458074321, 20945807432110, 2534442699285321, 364959748697086236, 61678197529807573897, 12088926715842284483826, 2720008511064514008860865, 696322178832515586268381456, 201237109682597004431562240801
Offset: 0
-
FoldList[#2^2*# + #2 &, Range[0, 20]] (* Paolo Xausa, Jun 19 2025 *)
-
a[0]:0$ a[n]:=n^2*a[n-1]+n$ makelist(a[n], n, 0, 15); /* Bruno Berselli, May 23 2011 */
-
a(n)=if(n==0,0,(n)^2*a(n-1)+(n));
for(n=0,12,print1(a(n),", ")); /* show terms */
Comments