cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A026243 a(n) = A000522(n) - 2.

Original entry on oeis.org

0, 3, 14, 63, 324, 1955, 13698, 109599, 986408, 9864099, 108505110, 1302061343, 16926797484, 236975164803, 3554627472074, 56874039553215, 966858672404688, 17403456103284419, 330665665962403998, 6613313319248079999, 138879579704209680020, 3055350753492612960483
Offset: 1

Views

Author

N. J. A. Sloane, based on a message from a correspondent who wishes to remain anonymous, Dec 21 2003

Keywords

Comments

Number of operations of addition and multiplication needed to evaluate a determinant of order n by cofactor expansion.

Examples

			To calculate a determinant of order 3:
    |a b c|       |e f|       |d f|       |d e|
D = |d e f| = a * |h i| - b * |g i| + c * |g h| =
    |g h i|
   = a * (e*i - f*h) - b * (d*i - f*g) + c * (d*h - e*g).
There are 9 multiplications * and 5 additions (+ or -), so 14 operations and a(3) = 14. - _Bernard Schott_, Apr 21 2019
		

Crossrefs

Cf. A000522, A007526. Equals A033312 + A038156.
Cf. A001339.

Programs

  • Maple
    a:= proc(n) a(n):= n*(a(n-1)+2)-1: end: a(1):= 0:
    seq (a(n), n=1..30);  # Alois P. Heinz, May 25 2012
  • Mathematica
    Table[E*Gamma[n+1, 1] - 2, {n, 1, 30}] (* Jean-François Alcover, May 18 2018 *)

Formula

a(n) = n*(a(n-1)+2)-1 for n>1, a(1) = 0. - Alois P. Heinz, May 25 2012
Conjecture: a(n) +(-n-2)*a(n-1) +(2*n-1)*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Jun 23 2013 [Confirmed by Altug Alkan, May 18 2018]
a(n) = floor(e*n!) - 2. - Bernard Schott, Apr 21 2019

A073591 a(n) = A000522(n) + 1.

Original entry on oeis.org

2, 3, 6, 17, 66, 327, 1958, 13701, 109602, 986411, 9864102, 108505113, 1302061346, 16926797487, 236975164806, 3554627472077, 56874039553218, 966858672404691, 17403456103284422, 330665665962404001, 6613313319248080002
Offset: 0

Views

Author

Vladeta Jovovic, Aug 28 2002

Keywords

Comments

a(n) is an upper bound on the Ramsey numbers in A003323. - D. G. Rogers, Aug 27 2006
There is a nice derivation of the recurrence relation given in the Walker reference.

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n=0, 2, n*a(n-1)-n+2) end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 17 2014
  • Mathematica
    f[n_] := n*(f[n - 1] - 1) + 2;f[0]=2; ff[n_]:=(1/(1+n))(1+E*Gamma[1+n, 1]-E*(n^2)*Gamma[1+n, 1]+E*n*Gamma[2+n, 1]) (Spindler)
    Table[FunctionExpand[Gamma[n, 1] E] + 1, {n, 2, 29}] (* Vincenzo Librandi, Feb 17 2014 *)

Formula

Conjecture: a(n) +(-n-2)*a(n-1) +(2*n-1)*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Feb 16 2014
a(n) = n*(a(n-1) - 1) + 2. - Georg Fischer, Dec 24 2023 [from the Walker reference, p. 55]

A121662 Triangle read by rows: T(i,j) for the recurrence T(i,j) = (T(i-1,j) + 1)*i.

Original entry on oeis.org

1, 4, 2, 15, 9, 3, 64, 40, 16, 4, 325, 205, 85, 25, 5, 1956, 1236, 516, 156, 36, 6, 13699, 8659, 3619, 1099, 259, 49, 7, 109600, 69280, 28960, 8800, 2080, 400, 64, 8, 986409, 623529, 260649, 79209, 18729, 3609, 585, 81, 9, 9864100, 6235300, 2606500, 792100, 187300, 36100, 5860, 820, 100, 10
Offset: 1

Views

Author

Thomas Wieder, Aug 15 2006

Keywords

Comments

The first column is A007526 = "the number of (nonnull) "variations" of n distinct objects, namely the number of permutations of nonempty subsets of {1,...,n}." E.g. for n=3 there are 15 subsets: {a}, {b}, {c}, {ab}, {ba}, {ac}, {ca}, {bc}, {cb}, {abc}, {acb}, {bac}, {bca}, {cab}, {cba}. These are subsets with a number of elements l=1,...,n. The second column excludes all subsets with l=n elements. For n=3 one has therefore only the 9 subsets {a}, {b}, {c}, {ab}, {ba}, {ac}, {ca}, {bc}, {cb}. The third column excludes all subsets with l>=n-1 elements. For n=3 one has therefore only the 3 subsets {a}, {b},{c}. See also A121684. The second column is A038156 = n!*Sum(1/k!, k=1..n-1). The first lower diagonal are the squares A000290 = n^2. The second lower diagonal (15, 40, 85...) is A053698 = n^3 + n^2 + n + 1. The row sum is A030297 = a(n) = n*(n+a(n-1)).
T(i, j) is the total number of ordered sets of size 1 to i-j+1 that can be created from i distinct items. - Manfred Boergens, Jun 22 2022

Examples

			Triangle T(i,j) begins:
       1
       4     2
      15     9     3
      64    40    16     4
     325   205    85    25    5
    1956  1236   516   156   36   6
   13699  8659  3619  1099  259  49  7
   ...
		

Crossrefs

Mirror of triangle A285268.

Programs

  • Maple
    T:= proc(i, j) option remember;
          `if`(j<1 or j>i, 0, T(i-1, j)*i+i)
        end:
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Jun 22 2022
  • Mathematica
    Table[Sum[m!/(m - i)!, {i, n}], {m, 9}, {n, m, 1, -1}] // Flatten (* Michael De Vlieger, Apr 22 2017 *)
    (* Sum-free code *)
    b[j_] = If[j == 0, 0, Floor[j! E - 1]];
    T[i_, j_] = b[i] - i! b[j - 1]/(j - 1)!;
    Table[T[i, j], {i, 24}, {j, i}] // Flatten
    (* Manfred Boergens, Jun 22 2022 *)

Formula

From Manfred Boergens, Jun 22 2022: (Start)
T(i, j) = Sum_{k=1..i-j+1} i!/(i-k)! = Sum_{k=j-1..i-1} i!/k!.
Sum-free formula: T(i, j) = b(i) - i!*b(j-1)/(j-1)! where b(0)=0, b(j)=floor(j!*e-1) for j>0.
(End)

Extensions

Edited by N. J. A. Sloane, Sep 15 2006
Formula in name corrected by Alois P. Heinz, Jun 22 2022

A337085 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) = n! * Sum_{j=0..n} j^k/j!.

Original entry on oeis.org

1, 0, 2, 0, 1, 5, 0, 1, 4, 16, 0, 1, 6, 15, 65, 0, 1, 10, 27, 64, 326, 0, 1, 18, 57, 124, 325, 1957, 0, 1, 34, 135, 292, 645, 1956, 13700, 0, 1, 66, 345, 796, 1585, 3906, 13699, 109601, 0, 1, 130, 927, 2404, 4605, 9726, 27391, 109600, 986410, 0, 1, 258, 2577, 7804, 15145, 28926, 68425, 219192, 986409, 9864101
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2020

Keywords

Examples

			Square array begins:
     1,    0,    0,    0,     0,     0,      0, ...
     2,    1,    1,    1,     1,     1,      1, ...
     5,    4,    6,   10,    18,    34,     66, ...
    16,   15,   27,   57,   135,   345,    927, ...
    65,   64,  124,  292,   796,  2404,   7804, ...
   326,  325,  645, 1585,  4605, 15145,  54645, ...
  1957, 1956, 3906, 9726, 28926, 98646, 374526, ...
		

Crossrefs

Columns k=0..5 give A000522, A007526, A030297, A337001, A337002, A368719.
Main diagonal gives A256016.
Cf. A368724.

Programs

  • Mathematica
    T[n_, k_] := n! * Sum[If[j == k == 0, 1, j^k]/j!, {j, 0, n}]; Table[T[k, n-k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)

Formula

T(0,k) = 0^k and T(n,k) = n^k + n * T(n-1,k) for n>0.
E.g.f. of column k: B_k(x) * exp(x) / (1-x), where B_n(x) = Bell polynomials. - Seiichi Manyama, Jan 04 2024

A368574 a(n) = n! * Sum_{k=0..n} binomial(k+2,3) / k!.

Original entry on oeis.org

0, 1, 6, 28, 132, 695, 4226, 29666, 237448, 2137197, 21372190, 235094376, 2821132876, 36674727843, 513446190362, 7701692856110, 123227085698576, 2094860456876761, 37707488223782838, 716442276251875252, 14328845525037506580, 300905756025787639951, 6619926632567328080946
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(x*sum(k=0, 2, binomial(2, k)*x^k/(k+1)!)*exp(x)/(1-x))))

Formula

a(0) = 0; a(n) = n*a(n-1) + binomial(n+2,3).
E.g.f.: x * (1+x+x^2/6) * exp(x) / (1-x).

A368575 a(n) = n! * Sum_{k=0..n} binomial(k+3,4) / k!.

Original entry on oeis.org

0, 1, 7, 36, 179, 965, 5916, 41622, 333306, 3000249, 30003205, 330036256, 3960436437, 51485675501, 720799459394, 10811991893970, 172991870307396, 2940861795230577, 52935512314156371, 1005774733968978364, 20115494679379576135, 422425388266971109461
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(x*sum(k=0, 3, binomial(3, k)*x^k/(k+1)!)*exp(x)/(1-x))))

Formula

a(0) = 0; a(n) = n*a(n-1) + binomial(n+3,4).
E.g.f.: x * (1+3*x/2+x^2/2+x^3/24) * exp(x) / (1-x).

A067273 a(n) = n*(a(n-1)*2+1), a(0) = 0.

Original entry on oeis.org

0, 1, 6, 39, 316, 3165, 37986, 531811, 8508984, 153161721, 3063234430, 67391157471, 1617387779316, 42052082262229, 1177458303342426, 35323749100272795, 1130359971208729456, 38432239021096801521, 1383560604759484854774, 52575302980860424481431, 2103012119234416979257260, 88326509007845513128804941
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 21 2002

Keywords

Crossrefs

Cf. A007526.

Programs

  • Maple
    a := n -> n*hypergeom([1,1-n],[],-2):
    seq(simplify(a(n)), n=0..17); # Peter Luschny, May 09 2017
  • Mathematica
    FoldList[2 #1*#2 + #2 &, 0, Range[19]] (* Robert G. Wilson v, Jul 07 2012 *)
    a[n_] := 2^(n-1)*Sqrt[E]*n*Gamma[n,1/2];
    Table[a[n] // FullSimplify, {n,0,20}] (* Gerry Martens, Jun 28 2015 *)
    nxt[{n_,a_}]:={n+1,(n+1)(2*a+1)}; NestList[nxt,{0,0},20][[;;,2]] (* Harvey P. Dale, Jun 26 2023 *)

Formula

E.g.f.: x*exp(x)/(1-2*x). a(n) = n!*Sum_{k=1..n} 2^(k-1)/(n-k)! = n*A010844(n-1). - Vladeta Jovovic, Feb 09 2003
a(n) ~ n! * exp(1/2) * 2^(n-1). - Vaclav Kotesovec, Oct 05 2013
a(n) = n*hypergeom([1,1-n], [], -2). - Peter Luschny, May 09 2017
a(n) = Sum_{k=1..n} 2^(k-1)*k!*binomial(n,k). - Ridouane Oudra, Jun 15 2025

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Nov 15 2008

A121757 Triangle read by rows: multiply Pascal's triangle by 1,2,6,24,120,720,... = A000142.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 18, 24, 1, 8, 36, 96, 120, 1, 10, 60, 240, 600, 720, 1, 12, 90, 480, 1800, 4320, 5040, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880, 1, 18, 216, 2016, 15120, 90720, 423360, 1451520
Offset: 0

Views

Author

Alford Arnold, Aug 19 2006

Keywords

Comments

Row sums are 1,3,11,49,261,1631,... = A001339
a(n,k) = D(n+1,k+1) Array D in A253938 is part of a conjectured formula for F(n,p,r) that relates Dyck path peaks and returns. a(n,k) was discovered prior to array D. - Roger Ford, May 19 2016

Examples

			Row 6 is 1*1 5*2 10*6 10*24 5*120 1*720.
From _Vincenzo Librandi_, Dec 16 2012: (Start)
Triangle begins:
1,
1, 2,
1, 4,  6,
1, 6,  18,  24,
1, 8,  36,  96,   120,
1, 10, 60,  240,  600,  720,
1, 12, 90,  480,  1800, 4320,  5040,
1, 14, 126, 840,  4200, 15120, 35280,  40320,
1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880 etc.
(End)
		

Crossrefs

Cf. A007526 A000522, A005843 (2nd column), A028896 (3rd column).
Cf. A008279.
Cf. A008277, A132159 (mirrored).

Programs

  • Haskell
    a121757 n k = a121757_tabl !! n !! k
    a121757_row n = a121757_tabl !! n
    a121757_tabl = iterate
       (\xs -> zipWith (+) (xs ++ [0]) (zipWith (*) [1..] ([0] ++ xs))) [1]
    -- Reinhard Zumkeller, Mar 06 2014
  • Mathematica
    Flatten[Table[n!(k+1)/(n-k)!,{n,0,10},{k,0,n}]]  (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    A000142(n)={ return(n!) ; } A007318(n,k)={ return(binomial(n,k)) ; } A121757(n,k)={ return(A007318(n,k)*A000142(k+1)) ; } { for(n=0,12, for(k=0,n, print1(A121757(n,k),",") ; ); ) ; } \\ R. J. Mathar, Sep 02 2006
    

Formula

a(n,k) = A007318(n,k)*A000142(k+1), k=0,1,..,n, n=0,1,2,3... - R. J. Mathar, Sep 02 2006
a(n,k) = A008279(n,k) * (k+1). a(n,k) = n!*(k+1)/(n-k)!. - Franklin T. Adams-Watters, Sep 20 2006

A126062 Array read by antidiagonals: see A128195 for details.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 15, 1, 1, 16, 65, 64, 1, 1, 25, 175, 511, 325, 1, 1, 36, 369, 2020, 4743, 1956, 1, 1, 49, 671, 5629, 27313, 52525, 13699, 1, 1, 64, 1105, 12736, 100045, 440896, 683657, 109600, 1, 1, 81, 1695, 25099, 280581, 2122449, 8390875, 10256775
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2007

Keywords

Examples

			Array begins:
[0]  1,  1,   1,     1,      1,       1,         1,          1,            1
[1]  1,  4,  15,    64,    325,    1956,     13699,     109600,       986409
[2]  1,  9,  65,   511,   4743,   52525,    683657,   10256775,    174369527
[3]  1, 16, 175,  2020,  27313,  440896,   8390875,  184647364,   4616348125
[4]  1, 25, 369,  5629, 100045, 2122449,  53163625, 1542220261,  50895431301
[5]  1, 36, 671, 12736, 280581, 7376356, 229151411, 8252263296, 338358810761
		

Crossrefs

The second row counts the variations of n distinct objects A007526.
The second column is sequence A000290. The third column is sequence A005917.

Programs

  • Maple
    A126062 := proc(k,n) if n = 0 then 1 ; else (n*k+1)*(A126062(k,n-1)+k^n) ; fi ; end: for diag from 0 to 10 do for k from diag to 0 by -1 do n := diag-k ; printf("%d, ",A126062(k,n)) ; od ; od ; # R. J. Mathar, May 18 2007
  • Mathematica
    a[, 0] = 1; a[k, n_] := a[k, n] = (n*k+1)*(a[k, n-1]+k^n); Table[a[k-n, n], {k, 0, 10}, {n, 0, k}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)

Formula

T(k, n) = (n*k+1)*(T(k, n-1) + k^n), T(k, 0) = 1. - Peter Luschny, Feb 26 2007

Extensions

More terms from R. J. Mathar, May 18 2007

A180255 a(n) = n^2 * a(n-1) + n, a(0)=0.

Original entry on oeis.org

0, 1, 6, 57, 916, 22905, 824586, 40404721, 2585902152, 209458074321, 20945807432110, 2534442699285321, 364959748697086236, 61678197529807573897, 12088926715842284483826, 2720008511064514008860865, 696322178832515586268381456, 201237109682597004431562240801
Offset: 0

Views

Author

Groux Roland, Jan 17 2011

Keywords

Comments

Integral_{x=0..1} x^n*BesselI(0,2*x^(1/2)) dx = A006040(n)*BesselI(1,2) - a(n)*BesselI(0,2). An elementary consequence is the irrationality of BesselI(0,2)/BesselI(1,2).

Crossrefs

Programs

  • Mathematica
    FoldList[#2^2*# + #2 &, Range[0, 20]] (* Paolo Xausa, Jun 19 2025 *)
  • Maxima
    a[0]:0$ a[n]:=n^2*a[n-1]+n$ makelist(a[n], n, 0, 15); /* Bruno Berselli, May 23 2011 */
  • PARI
    a(n)=if(n==0,0,(n)^2*a(n-1)+(n));
    for(n=0,12,print1(a(n),", "));  /* show terms */
    

Formula

From Seiichi Manyama, Jan 05 2024: (Start)
a(n) = (n!)^2 * Sum_{k=0..n} k/(k!)^2.
a(n) = n * A228229(n-1) for n > 0. (End)
Previous Showing 21-30 of 53 results. Next