cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 53 results. Next

A193563 a(0) = 0, a(n) = n^2 * (a(n-1) + 1).

Original entry on oeis.org

0, 1, 8, 81, 1312, 32825, 1181736, 57905113, 3705927296, 300180111057, 30018011105800, 3632179343801921, 523033825507476768, 88392716510763573961, 17324972436109660496552, 3898118798124673611724425, 997918412319916444601453056
Offset: 0

Views

Author

Meherzad Lahewala, Jul 31 2011

Keywords

Crossrefs

Cf. A006040, A007526 (multiply by n instead of n^2), A180255.

Programs

  • Maple
    seq(n!^2*add(1/k!^2,k=0..n-1),n=0..16);   # Mark van Hoeij, May 13 2013
  • Mathematica
    FoldList[#2^2*(# + 1) &, Range[0, 20]] (* Paolo Xausa, Jun 18 2025 *)
  • PARI
    a=[0];for(n=1,20,a=concat(a,(a[#a]+1)*n^2));a \\ Charles R Greathouse IV, Jul 31 2011

Formula

From Seiichi Manyama, Jan 05 2024: (Start)
a(n) = (n!)^2 * Sum_{k=0..n} (k/k!)^2.
a(n) = n^2 * A006040(n-1) for n > 0. (End)
a(n) = Sum_{k=1..n} (k!*binomial(n,k))^2. - Ridouane Oudra, Jun 14 2025
a(n) = n^2 + BesselI(0,2)*(n!)^2 - n^2*hypergeom([1], [n, n], 1) for n > 0. - Stefano Spezia, Jun 14 2025

A285268 Triangle read by rows: T(m,n) = Sum_{i=1..n} P(m,i) where P(m,n) = m!/(m-n)! is the number of permutations of m items taken n at a time, for 1 <= n <= m.

Original entry on oeis.org

1, 2, 4, 3, 9, 15, 4, 16, 40, 64, 5, 25, 85, 205, 325, 6, 36, 156, 516, 1236, 1956, 7, 49, 259, 1099, 3619, 8659, 13699, 8, 64, 400, 2080, 8800, 28960, 69280, 109600, 9, 81, 585, 3609, 18729, 79209, 260649, 623529, 986409, 10, 100, 820, 5860, 36100, 187300, 792100, 2606500, 6235300, 9864100
Offset: 1

Views

Author

Rick Nungester, Apr 15 2017

Keywords

Comments

T(m, n) is the total number of ordered sets of size 1 to n that can be created from m distinct items. For example, for 4 items taken 1 to 3 at a time, there are P(4, 1) + P(4, 2) + P(4, 3) = 4 + 12 + 24 = 40 total sets: 1, 12, 123, 124, 13, 132, 134, 14, 142, 143, 2, 21, 213, 214, 23, 231, 234, 24, 241, 243, 3, 31, 312, 314, 32, 321, 324, 34, 341, 342, 4, 41, 412, 413, 42, 421, 423, 43, 431, 432.
T(m, n) is the total number of tests in a software program that generates all P(m, n) possible solutions to a problem, allowing early-termination testing on each partial permutation, and not doing any such early termination. For example, from a deck of 52 cards, evaluate all possible 5-card deals as each card is dealt. T(52, 5) = 318507904 total evaluations.
T(m, n) counts the numbers with <= n distinct nonzero digits in base m+1. - M. F. Hasler, Oct 10 2019

Examples

			Triangle begins:
  1;
  2,  4;
  3,  9,  15;
  4, 16,  40,   64;
  5, 25,  85,  205,   325;
  6, 36, 156,  516,  1236,  1956;
  7, 49, 259, 1099,  3619,  8659,  13699;
  8, 64, 400, 2080,  8800, 28960,  69280, 109600;
  9, 81, 585, 3609, 18729, 79209, 260649, 623529, 986409;
  ...
		

Crossrefs

Mirror of triangle A121662.
Row sums give A030297.
Diagonals (1..4): A007526 (less the initial 0), A038156 (less the initial 0, 0), A224869 (less the initial -1, 0), A079750 (less the initial 0).
Columns (1..3): A000027, A000290 (less the initial 0, 1), A053698 (less the initial 1, 4).

Programs

  • Maple
    SumPermuteTriangle := proc(M)
      local m;
      for m from 1 to M do print(seq(add(m!/(m-k)!, k=1..n), n=1..m)) od;
    end:
    SumPermuteTriangle(10);
    # second Maple program:
    T:= proc(n, k) option remember;
         `if`(k<1, 0, T(n-1, k-1)*n+n)
        end:
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Jun 26 2022
  • Mathematica
    Table[Sum[m!/(m - i)!, {i, n}], {m, 9}, {n, m}] // Flatten (* Michael De Vlieger, Apr 22 2017 *)
    (* Sum-free code *)
    b[j_] = If[j==0, 0, Floor[j! E - 1]]; T[m_,n_] = b[m] - m! b[m-n]/(m-n)!; Table[T[m, n],{m, 24},{n, m}]//Flatten
    (* Manfred Boergens, Jun 22 2022 *)
  • PARI
    A285268(m,n,s=m-n+1)={for(k=m-n+2,m,s=(s+1)*k);s} \\ Much faster than sum(k=1,n,m!\(m-k)!), e.g., factor 6 for m=1..99, factor 57 for m=1..199.
    apply( A285268_row(m)=vector(m,n,A285268(m,n)), [1..9]) \\ M. F. Hasler, Oct 10 2019
    
  • PARI
    T(n, k) = {exp(1)*(incgam(n+1, 1) - incgam(n-k, 1)*(n-k)*n!/(n-k)!) - 1;}
      apply(Trow(n) = vector(n, k, round(T(n, k))), [1..10]) \\ Adjust the realprecision if needed. Peter Luschny, Oct 10 2019

Formula

T(m, n) = Sum_{k=1..n} m!/(m-k)! = m*(1 + (m-1)*(1 + (m-2)*(1 + ... + m-n+1)...)), cf. PARI code. - M. F. Hasler, Oct 10 2019
T(n, k) = exp(1)*(Gamma(n+1, 1) - Gamma(n-k, 1)*(n-k)*n!/(n-k)!) - 1. - Peter Luschny, Oct 10 2019
Sum-free and Gamma-free formula: T(m, n) = b(m) - m!*b(m-n)/(m-n)! where b(0)=0, b(j)=floor(j!*e-1) for j>0. - Manfred Boergens, Jun 22 2022

A357479 a(n) = (n!/6) * Sum_{k=0..n-3} 1/k!.

Original entry on oeis.org

0, 0, 0, 1, 8, 50, 320, 2275, 18256, 164388, 1644000, 18084165, 217010200, 2821132886, 39495860768, 592437911975, 9479006592160, 161143112067400, 2900576017214016, 55110944327067273, 1102218886541346600, 23146596617368279930, 509225125582102160000
Offset: 0

Views

Author

Seiichi Manyama, Sep 30 2022

Keywords

Crossrefs

Column k=3 of A073107.

Programs

  • Mathematica
    Table[n!/6 Sum[1/k!,{k,0,n-3}],{n,0,30}] (* Harvey P. Dale, Apr 02 2023 *)
  • PARI
    a(n) = n!/6*sum(k=0, n-3, 1/k!);
    
  • PARI
    a(n) = n!*sum(k=0, n, binomial(k, 3)/k!);
    
  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(serlaplace(x^3/6*exp(x)/(1-x))))
    
  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=3, N, k!*x^k/(1-x)^(k+1))/6))

Formula

a(n) = n! * Sum_{k=0..n} binomial(k,3)/k!.
a(0) = 0; a(n) = n * a(n-1) + binomial(n,3).
E.g.f.: x^3/6 * exp(x)/(1-x).
G.f.: (1/6) * Sum_{k>=3} k! * x^k/(1-x)^(k+1).

A357480 a(n) = (n!/24) * Sum_{k=0..n-4} 1/k!.

Original entry on oeis.org

0, 0, 0, 0, 1, 10, 75, 560, 4550, 41076, 410970, 4521000, 54252495, 705283150, 9873965101, 148109477880, 2369751647900, 40285778016680, 725144004303300, 13777736081766576, 275554721635336365, 5786649154342069650, 127306281395525539615, 2928044472097087420000
Offset: 0

Views

Author

Seiichi Manyama, Sep 30 2022

Keywords

Crossrefs

Column k=4 of A073107.

Programs

  • PARI
    a(n) = n!/24*sum(k=0, n-4, 1/k!);
    
  • PARI
    a(n) = n!*sum(k=0, n, binomial(k, 4)/k!);
    
  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(serlaplace(x^4/24*exp(x)/(1-x))))
    
  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=4, N, k!*x^k/(1-x)^(k+1))/24))

Formula

a(n) = n! * Sum_{k=0..n} binomial(k,4)/k!.
a(0) = 0; a(n) = n * a(n-1) + binomial(n,4).
E.g.f.: x^4/24 * exp(x)/(1-x).
G.f.: (1/24) * Sum_{k>=4} k! * x^k/(1-x)^(k+1).

A368576 a(n) = n! * Sum_{k=0..n} binomial(k+4,5) / k!.

Original entry on oeis.org

0, 1, 8, 45, 236, 1306, 8088, 57078, 457416, 4118031, 41182312, 453008435, 5436105588, 70669378832, 989371312216, 14840569694868, 237449115133392, 4036634957288013, 72659429231210568, 1380529155393034441, 27610583107860731324, 579822245265075410934
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(x*sum(k=0, 4, binomial(4, k)*x^k/(k+1)!)*exp(x)/(1-x))))

Formula

a(0) = 0; a(n) = n*a(n-1) + binomial(n+4,5).
E.g.f.: x * (1+2*x+x^2+x^3/6+x^4/120) * exp(x) / (1-x).

A371898 Triangle read by rows: T(n, k) = n * k * (T(n-1, k-1) + T(n-1, k)) for k > 0 with initial values T(n, 0) = 1 and T(i, j) = 0 for j > i.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 15, 48, 36, 1, 64, 504, 1008, 576, 1, 325, 5680, 22680, 31680, 14400, 1, 1956, 72060, 510480, 1304640, 1382400, 518400, 1, 13699, 1036224, 12233340, 50823360, 94046400, 79833600, 25401600, 1, 109600, 16798768, 318469536, 2017814400, 5794790400, 8346240000, 5893171200, 1625702400
Offset: 0

Views

Author

Werner Schulte, Apr 11 2024

Keywords

Examples

			Lower triangular array starts:
n\k :  0      1        2         3         4         5         6         7
==========================================================================
  0 :  1
  1 :  1      1
  2 :  1      4        4
  3 :  1     15       48        36
  4 :  1     64      504      1008       576
  5 :  1    325     5680     22680     31680     14400
  6 :  1   1956    72060    510480   1304640   1382400    518400
  7 :  1  13699  1036224  12233340  50823360  94046400  79833600  25401600
  etc.
		

Crossrefs

Cf. A000012 (column 0), A007526 (column 1), A001044 (main diagonal).

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(k - j)*Binomial[k, j]*HypergeometricPFQ[{1, -n}, {}, -j], {j, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten  (* Peter Luschny, Apr 12 2024 *)
  • PARI
    T(n, k) = if(k==0, 1, if(k > n, 0, n*k*(T(n-1, k-1) + T(n-1, k))))

Formula

T(n, k) = Sum_{i=k..n} A131689(i, k) * n! / (n-i)!.
T(n, k) = n! * k! * (Sum_{i=0..n-k} A048993(n-i, k) / i!).
T(n, k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k, i) * A320031(n, i).
Conjecture: E.g.f. of column k is exp(t) * t^k * k! / (Prod_{i=0..k} (1 - i*t)).
Conjecture: Sum_{k=0..n} (-1)^(n-k) * T(n, k) = A000166(n).
T(n, k) = A371766(n, k) * A371767(n, k). - Peter Luschny, Apr 14 2024

A224869 a(n) = n*( a(n-1)+1 ), initialized by a(1) = -1.

Original entry on oeis.org

-1, 0, 3, 16, 85, 516, 3619, 28960, 260649, 2606500, 28671511, 344058144, 4472755885, 62618582404, 939278736075, 15028459777216, 255483816212689, 4598708691828420, 87375465144739999, 1747509302894800000, 36697695360790800021, 807349297937397600484
Offset: 1

Views

Author

Alex Ratushnyak, Jul 22 2013

Keywords

Examples

			a(4) = 4*(a(3)+1) = 4*4 = 16.
		

Crossrefs

Cf. A007526, A038156, A166554, A121662 (3rd column).

Programs

Formula

a(n) +(-n-2)*a(n-1) +(2*n-1)*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Jul 28 2013
a(n) = exp(1)*n*Gamma(n,1) - 2*Gamma(n+1,0). - Martin Clever, Mar 27 2023

A318364 Expansion of e.g.f. exp(x*exp(x)/(1 - x)).

Original entry on oeis.org

1, 1, 5, 28, 197, 1676, 16597, 186796, 2350105, 32634928, 495207881, 8144456684, 144204493765, 2733218222944, 55188182951917, 1182163846918156, 26765995313355953, 638508459302742464, 16002492517241163793, 420279349847440766284, 11540406000681962458141, 330624627443307824367616
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(exp(x*exp(x)/(1 - x)), x=0, 22): seq(n!*coeff(a, x, n), n=0..21); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[x Exp[x]/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Floor[Exp[1] k! - 1] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]
  • PARI
    x = 'x + O('x^25); Vec(serlaplace(exp(x*exp(x)/(1 - x)))) \\ Michel Marcus, Aug 25 2018

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A007526(k)*binomial(n-1,k-1)*a(n-k).
a(n) ~ exp(1/4 - 3*exp(1)/2 + 2*exp(1/2)*sqrt(n) - n) * n^(n - 1/4) / sqrt(2). - Vaclav Kotesovec, Aug 25 2018

A331797 E.g.f.: (exp(x) - 1) * exp(exp(x) - 1) / (2 - exp(x)).

Original entry on oeis.org

0, 1, 5, 28, 183, 1401, 12466, 127443, 1478581, 19239274, 277797577, 4409962349, 76355817104, 1432117088325, 28925947345561, 625973017346996, 14449435509751843, 354384392492622789, 9202836581079864186, 252260861877820739167, 7278710020682729662089
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 26 2020

Keywords

Comments

Stirling transform of A007526.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(Exp[x] - 1) Exp[Exp[x] - 1]/(2 - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    A007526[n_] := n! Sum[1/k!, {k, 0, n - 1}]; a[n_] := Sum[StirlingS2[n, k] A007526[k], {k, 0, n}]; Table[a[n], {n, 0, 20}]
    Table[(1/2) Sum[Binomial[n, k] HurwitzLerchPhi[1/2, -k, 0] BellB[n - k], {k, 1, n}], {n, 0, 20}]

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A007526(k).
a(n) = Sum_{k=1..n} binomial(n,k) * A000670(k) * A000110(n-k).
a(n) ~ n! * exp(1) / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Jan 26 2020

A334156 Triangle read by rows: T(n,m) is the number of length n decorated permutations avoiding the word 0^m = 0...0 of m 0's, where 1 <= m <= n.

Original entry on oeis.org

1, 2, 4, 6, 12, 15, 24, 48, 60, 64, 120, 240, 300, 320, 325, 720, 1440, 1800, 1920, 1950, 1956, 5040, 10080, 12600, 13440, 13650, 13692, 13699, 40320, 80640, 100800, 107520, 109200, 109536, 109592, 109600, 362880, 725760, 907200, 967680, 982800, 985824, 986328, 986400, 986409
Offset: 1

Views

Author

Jordan Weaver, Apr 16 2020

Keywords

Comments

A length n decorated permutation is a word w = w_1....w_n on the letters {0,...,n} such that the restriction of w to its nonzero entries is an ordinary permutation in one-line notation. Then w avoids 0^m if w contains at most m-1 0's as letters, and w contains 0^m if w contains m 0's among its letters (not necessarily consecutive).

Examples

			For (n,m) = (3,2), the T(3,2) = 12 length 3 decorated permutations avoiding 0^2 = 00 are 012, 102, 120, 021, 201, 210, 123, 132, 213, 231, 312, and 321.
Triangle begins:
    1
    2,   4
    6,  12,  15
   24,  48,  60,  64
  120, 240, 300, 320, 325
		

Crossrefs

Cf. A000142 (1st column), A007526 (right diagonal).
Row sums are A093964.

Programs

  • Mathematica
    Array[Accumulate[#!/Range[0,#-1]!]&,10] (* Paolo Xausa, Jan 08 2024 *)
  • PARI
    T(n,m)={sum(j=0, m-1, n!/j!)} \\ Andrew Howroyd, May 11 2020

Formula

T(n,m) = Sum_{j=0..m-1} n!/j!.

Extensions

Terms a(37) and beyond from Andrew Howroyd, Jan 07 2024
Previous Showing 31-40 of 53 results. Next