A193563
a(0) = 0, a(n) = n^2 * (a(n-1) + 1).
Original entry on oeis.org
0, 1, 8, 81, 1312, 32825, 1181736, 57905113, 3705927296, 300180111057, 30018011105800, 3632179343801921, 523033825507476768, 88392716510763573961, 17324972436109660496552, 3898118798124673611724425, 997918412319916444601453056
Offset: 0
-
seq(n!^2*add(1/k!^2,k=0..n-1),n=0..16); # Mark van Hoeij, May 13 2013
-
FoldList[#2^2*(# + 1) &, Range[0, 20]] (* Paolo Xausa, Jun 18 2025 *)
-
a=[0];for(n=1,20,a=concat(a,(a[#a]+1)*n^2));a \\ Charles R Greathouse IV, Jul 31 2011
A285268
Triangle read by rows: T(m,n) = Sum_{i=1..n} P(m,i) where P(m,n) = m!/(m-n)! is the number of permutations of m items taken n at a time, for 1 <= n <= m.
Original entry on oeis.org
1, 2, 4, 3, 9, 15, 4, 16, 40, 64, 5, 25, 85, 205, 325, 6, 36, 156, 516, 1236, 1956, 7, 49, 259, 1099, 3619, 8659, 13699, 8, 64, 400, 2080, 8800, 28960, 69280, 109600, 9, 81, 585, 3609, 18729, 79209, 260649, 623529, 986409, 10, 100, 820, 5860, 36100, 187300, 792100, 2606500, 6235300, 9864100
Offset: 1
Triangle begins:
1;
2, 4;
3, 9, 15;
4, 16, 40, 64;
5, 25, 85, 205, 325;
6, 36, 156, 516, 1236, 1956;
7, 49, 259, 1099, 3619, 8659, 13699;
8, 64, 400, 2080, 8800, 28960, 69280, 109600;
9, 81, 585, 3609, 18729, 79209, 260649, 623529, 986409;
...
Diagonals (1..4):
A007526 (less the initial 0),
A038156 (less the initial 0, 0),
A224869 (less the initial -1, 0),
A079750 (less the initial 0).
-
SumPermuteTriangle := proc(M)
local m;
for m from 1 to M do print(seq(add(m!/(m-k)!, k=1..n), n=1..m)) od;
end:
SumPermuteTriangle(10);
# second Maple program:
T:= proc(n, k) option remember;
`if`(k<1, 0, T(n-1, k-1)*n+n)
end:
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Jun 26 2022
-
Table[Sum[m!/(m - i)!, {i, n}], {m, 9}, {n, m}] // Flatten (* Michael De Vlieger, Apr 22 2017 *)
(* Sum-free code *)
b[j_] = If[j==0, 0, Floor[j! E - 1]]; T[m_,n_] = b[m] - m! b[m-n]/(m-n)!; Table[T[m, n],{m, 24},{n, m}]//Flatten
(* Manfred Boergens, Jun 22 2022 *)
-
A285268(m,n,s=m-n+1)={for(k=m-n+2,m,s=(s+1)*k);s} \\ Much faster than sum(k=1,n,m!\(m-k)!), e.g., factor 6 for m=1..99, factor 57 for m=1..199.
apply( A285268_row(m)=vector(m,n,A285268(m,n)), [1..9]) \\ M. F. Hasler, Oct 10 2019
-
T(n, k) = {exp(1)*(incgam(n+1, 1) - incgam(n-k, 1)*(n-k)*n!/(n-k)!) - 1;}
apply(Trow(n) = vector(n, k, round(T(n, k))), [1..10]) \\ Adjust the realprecision if needed. Peter Luschny, Oct 10 2019
A357479
a(n) = (n!/6) * Sum_{k=0..n-3} 1/k!.
Original entry on oeis.org
0, 0, 0, 1, 8, 50, 320, 2275, 18256, 164388, 1644000, 18084165, 217010200, 2821132886, 39495860768, 592437911975, 9479006592160, 161143112067400, 2900576017214016, 55110944327067273, 1102218886541346600, 23146596617368279930, 509225125582102160000
Offset: 0
-
Table[n!/6 Sum[1/k!,{k,0,n-3}],{n,0,30}] (* Harvey P. Dale, Apr 02 2023 *)
-
a(n) = n!/6*sum(k=0, n-3, 1/k!);
-
a(n) = n!*sum(k=0, n, binomial(k, 3)/k!);
-
my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(serlaplace(x^3/6*exp(x)/(1-x))))
-
my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=3, N, k!*x^k/(1-x)^(k+1))/6))
A357480
a(n) = (n!/24) * Sum_{k=0..n-4} 1/k!.
Original entry on oeis.org
0, 0, 0, 0, 1, 10, 75, 560, 4550, 41076, 410970, 4521000, 54252495, 705283150, 9873965101, 148109477880, 2369751647900, 40285778016680, 725144004303300, 13777736081766576, 275554721635336365, 5786649154342069650, 127306281395525539615, 2928044472097087420000
Offset: 0
-
a(n) = n!/24*sum(k=0, n-4, 1/k!);
-
a(n) = n!*sum(k=0, n, binomial(k, 4)/k!);
-
my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(serlaplace(x^4/24*exp(x)/(1-x))))
-
my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=4, N, k!*x^k/(1-x)^(k+1))/24))
A368576
a(n) = n! * Sum_{k=0..n} binomial(k+4,5) / k!.
Original entry on oeis.org
0, 1, 8, 45, 236, 1306, 8088, 57078, 457416, 4118031, 41182312, 453008435, 5436105588, 70669378832, 989371312216, 14840569694868, 237449115133392, 4036634957288013, 72659429231210568, 1380529155393034441, 27610583107860731324, 579822245265075410934
Offset: 0
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(x*sum(k=0, 4, binomial(4, k)*x^k/(k+1)!)*exp(x)/(1-x))))
A371898
Triangle read by rows: T(n, k) = n * k * (T(n-1, k-1) + T(n-1, k)) for k > 0 with initial values T(n, 0) = 1 and T(i, j) = 0 for j > i.
Original entry on oeis.org
1, 1, 1, 1, 4, 4, 1, 15, 48, 36, 1, 64, 504, 1008, 576, 1, 325, 5680, 22680, 31680, 14400, 1, 1956, 72060, 510480, 1304640, 1382400, 518400, 1, 13699, 1036224, 12233340, 50823360, 94046400, 79833600, 25401600, 1, 109600, 16798768, 318469536, 2017814400, 5794790400, 8346240000, 5893171200, 1625702400
Offset: 0
Lower triangular array starts:
n\k : 0 1 2 3 4 5 6 7
==========================================================================
0 : 1
1 : 1 1
2 : 1 4 4
3 : 1 15 48 36
4 : 1 64 504 1008 576
5 : 1 325 5680 22680 31680 14400
6 : 1 1956 72060 510480 1304640 1382400 518400
7 : 1 13699 1036224 12233340 50823360 94046400 79833600 25401600
etc.
-
T[n_, k_] := Sum[(-1)^(k - j)*Binomial[k, j]*HypergeometricPFQ[{1, -n}, {}, -j], {j, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Peter Luschny, Apr 12 2024 *)
-
T(n, k) = if(k==0, 1, if(k > n, 0, n*k*(T(n-1, k-1) + T(n-1, k))))
A224869
a(n) = n*( a(n-1)+1 ), initialized by a(1) = -1.
Original entry on oeis.org
-1, 0, 3, 16, 85, 516, 3619, 28960, 260649, 2606500, 28671511, 344058144, 4472755885, 62618582404, 939278736075, 15028459777216, 255483816212689, 4598708691828420, 87375465144739999, 1747509302894800000, 36697695360790800021, 807349297937397600484
Offset: 1
a(4) = 4*(a(3)+1) = 4*4 = 16.
A318364
Expansion of e.g.f. exp(x*exp(x)/(1 - x)).
Original entry on oeis.org
1, 1, 5, 28, 197, 1676, 16597, 186796, 2350105, 32634928, 495207881, 8144456684, 144204493765, 2733218222944, 55188182951917, 1182163846918156, 26765995313355953, 638508459302742464, 16002492517241163793, 420279349847440766284, 11540406000681962458141, 330624627443307824367616
Offset: 0
-
a:=series(exp(x*exp(x)/(1 - x)), x=0, 22): seq(n!*coeff(a, x, n), n=0..21); # Paolo P. Lava, Mar 26 2019
-
nmax = 21; CoefficientList[Series[Exp[x Exp[x]/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Floor[Exp[1] k! - 1] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]
-
x = 'x + O('x^25); Vec(serlaplace(exp(x*exp(x)/(1 - x)))) \\ Michel Marcus, Aug 25 2018
A331797
E.g.f.: (exp(x) - 1) * exp(exp(x) - 1) / (2 - exp(x)).
Original entry on oeis.org
0, 1, 5, 28, 183, 1401, 12466, 127443, 1478581, 19239274, 277797577, 4409962349, 76355817104, 1432117088325, 28925947345561, 625973017346996, 14449435509751843, 354384392492622789, 9202836581079864186, 252260861877820739167, 7278710020682729662089
Offset: 0
-
nmax = 20; CoefficientList[Series[(Exp[x] - 1) Exp[Exp[x] - 1]/(2 - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
A007526[n_] := n! Sum[1/k!, {k, 0, n - 1}]; a[n_] := Sum[StirlingS2[n, k] A007526[k], {k, 0, n}]; Table[a[n], {n, 0, 20}]
Table[(1/2) Sum[Binomial[n, k] HurwitzLerchPhi[1/2, -k, 0] BellB[n - k], {k, 1, n}], {n, 0, 20}]
A334156
Triangle read by rows: T(n,m) is the number of length n decorated permutations avoiding the word 0^m = 0...0 of m 0's, where 1 <= m <= n.
Original entry on oeis.org
1, 2, 4, 6, 12, 15, 24, 48, 60, 64, 120, 240, 300, 320, 325, 720, 1440, 1800, 1920, 1950, 1956, 5040, 10080, 12600, 13440, 13650, 13692, 13699, 40320, 80640, 100800, 107520, 109200, 109536, 109592, 109600, 362880, 725760, 907200, 967680, 982800, 985824, 986328, 986400, 986409
Offset: 1
For (n,m) = (3,2), the T(3,2) = 12 length 3 decorated permutations avoiding 0^2 = 00 are 012, 102, 120, 021, 201, 210, 123, 132, 213, 231, 312, and 321.
Triangle begins:
1
2, 4
6, 12, 15
24, 48, 60, 64
120, 240, 300, 320, 325
-
Array[Accumulate[#!/Range[0,#-1]!]&,10] (* Paolo Xausa, Jan 08 2024 *)
-
T(n,m)={sum(j=0, m-1, n!/j!)} \\ Andrew Howroyd, May 11 2020
Comments