1, 1, 2, 2, 4, 2, 10, 2, 16, 8, 34, 2, 100, 2, 130, 38, 256, 2, 1000, 2, 1156, 134, 2050, 2, 10000, 32, 8194, 512, 16900, 2, 146854, 2, 65536, 2054, 131074, 158, 1000000, 2, 524290, 8198, 1336336, 2, 11680390, 2, 4202500, 54872, 8388610, 2, 100000000, 128
Offset: 0
A006522
4-dimensional analog of centered polygonal numbers. Also number of regions created by sides and diagonals of a convex n-gon in general position.
Original entry on oeis.org
1, 0, 0, 1, 4, 11, 25, 50, 91, 154, 246, 375, 550, 781, 1079, 1456, 1925, 2500, 3196, 4029, 5016, 6175, 7525, 9086, 10879, 12926, 15250, 17875, 20826, 24129, 27811, 31900, 36425, 41416, 46904, 52921, 59500, 66675, 74481, 82954, 92131
Offset: 0
For a pentagon in general position, 11 regions are formed (Comtet, Fig. 20, p. 74).
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 8.
- Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 102.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. W. Freeman, The number of regions determined by a convex polygon, Math. Mag., 49 (1976), 23-25.
- Math Forum, Regions of a circle Cut by Chords to n points.
- V. Meally, Letter to N. J. A. Sloane, May 1975.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Polygon Diagonal.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[Binomial(n, 4)+Binomial(n-1, 2): n in [0..40]]; // Vincenzo Librandi, Jun 09 2013
-
A006522 := n->(1/24)*(n-1)*(n-2)*(n^2-3*n+12):
seq(A006522(n), n=0..40);
A006522:=-(1-z+z**2)/(z-1)**5; # Simon Plouffe in his 1992 dissertation; gives sequence except for three leading terms
-
a=2;b=3;s=4;lst={1,0,0,1,s};Do[a+=n;b+=a;s+=b;AppendTo[lst,s],{n,2,6!,1}];lst (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
Table[Binomial[n,4]+Binomial[n-1,2],{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,0,0,1,4},40] (* Harvey P. Dale, Jul 11 2011 *)
CoefficientList[Series[-(((x - 1) x (x (4 x - 5) + 5) + 1) / (x - 1)^5), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
a[n_] := If[n==0, 1, Sum[PolygonalNumber[n-k+1, k], {k, 0, n-2}]];
a /@ Range[0, 40] (* Jean-François Alcover, Jan 21 2020 *)
-
a(n)=1/24*n^4 - 1/4*n^3 + 23/24*n^2 - 7/4*n + 1 \\ Charles R Greathouse IV, Feb 09 2017
A006600
Total number of triangles visible in regular n-gon with all diagonals drawn.
Original entry on oeis.org
1, 8, 35, 110, 287, 632, 1302, 2400, 4257, 6956, 11297, 17234, 25935, 37424, 53516, 73404, 101745, 136200, 181279, 236258, 306383, 389264, 495650, 620048, 772785, 951384, 1167453, 1410350, 1716191, 2058848, 2463384, 2924000, 3462305, 4067028, 4776219, 5568786, 6479551
Offset: 3
a(4) = 8 because in a quadrilateral the diagonals cross to make four triangles, which pair up to make four more.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=3..1000
- Sascha Kurz, m-gons in regular n-gons
- Victor Meally, Letter to N. J. A. Sloane, no date.
- B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.
- B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, SIAM J. on Discrete Mathematics, Vol. 11, No. 1, 135-156 (1998).
- B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv version, which has fewer typos than the SIAM version.
- B. Poonen and M. Rubinstein, Mathematica programs for these sequences
- M. Rubinstein, Drawings for n=4,5,6,...
- T. Sillke, Number of triangles for convex n-gon
- S. E. Sommars and T. Sommars, Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon, J. Integer Sequences, 1 (1998), #98.1.5.
- Sequences formed by drawing all diagonals in regular polygon
-
del[m_,n_]:=If[Mod[n,m]==0,1,0]; Tri[n_]:=n(n-1)(n-2)(n^3+18n^2-43n+60)/720 - del[2,n](n-2)(n-7)n/8 - del[4,n](3n/4) - del[6,n](18n-106)n/3 + del[12,n]*33n + del[18,n]*36n + del[24,n]*24n - del[30,n]*96n - del[42,n]*72n - del[60,n]*264n - del[84,n]*96n - del[90,n]*48n - del[120,n]*96n - del[210,n]*48n; Table[Tri[n], {n,3,1000}] (* T. D. Noe, Dec 21 2006 *)
a(3)-a(8) computed by Victor Meally (personal communication to
N. J. A. Sloane, circa 1975); later terms and recurrence from S. Sommars and T. Sommars.
A067151
Number of regions in regular n-gon which are quadrilaterals (4-gons) when all its diagonals are drawn.
Original entry on oeis.org
0, 0, 6, 7, 24, 36, 90, 132, 168, 234, 378, 600, 672, 901, 954, 1444, 1580, 2520, 2860, 2990, 3696, 4800, 5070, 6750, 7644, 9309, 7920, 12927, 12896, 15576, 16898, 20475, 18684, 25382, 27246, 30966, 32760, 37064, 37170, 45838, 47300, 55350, 60996, 69231, 66864, 80507, 87550, 98124, 103272
Offset: 4
a(6)=6 because the 6 regions around the center are quadrilaterals.
- B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.
- Scott R. Shannon, Table of n, a(n) for n = 4..765
- Sascha Kurz, m-gons in regular n-gons
- B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG], 1995-2006, which has fewer typos than the SIAM version.
- B. Poonen and M. Rubinstein, Mathematica programs for these sequences
- N. J. A. Sloane, Summary table for vertices and regions in regular n-gon with all chords drawn, for n = 3..19. [V = total number of vertices (A007569), V_i (i>=2) = number of vertices where i lines cross (A292105, A292104, A101363); R = total number of cells or regions (A007678), R_i (i>=3) = number of regions with i edges (A331450, A062361, A067151).]
- Sequences formed by drawing all diagonals in regular polygon
Cf.
A007678,
A067163,
A064869,
A067152,
A067153,
A067154,
A067155,
A067156,
A067157,
A067158,
A067159.
A331931
The number of regions inside a hexagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
Original entry on oeis.org
24, 408, 2268, 8208, 20832, 44640, 89214, 154752, 249906, 390012, 590658, 824712, 1183704, 1580868, 2067162, 2770476, 3585582, 4397172, 5665818, 6827736, 8318976, 10209948, 12364098, 14395164, 17194230, 20216808, 23436612, 27124416, 31817676, 35516328
Offset: 1
- Scott R. Shannon, Hexagon regions for n = 1.
- Scott R. Shannon, Hexagon regions for n = 2.
- Scott R. Shannon, Hexagon regions for n = 3.
- Scott R. Shannon, Hexagon regions for n = 4.
- Scott R. Shannon, Hexagon regions for n = 5.
- Scott R. Shannon, Hexagon regions for n = 6.
- Scott R. Shannon, Hexagon regions for n = 7.
- Scott R. Shannon, Hexagon regions for n = 8.
- Scott R. Shannon, Hexagon regions for n = 5, with random distance-based coloring.
- Scott R. Shannon, Hexagon regions for n = 6, with random distance-based coloring.
- Wikipedia, Hexagon.
A331929
The number of regions inside a pentagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
Original entry on oeis.org
11, 170, 1161, 3900, 10741, 22380, 44491, 76610, 126336, 194070, 290651, 410860, 577721, 779340, 1035676, 1345030, 1730696, 2176040, 2724036, 3345880, 4087656, 4933200, 5921991, 7018210, 8300896, 9723300, 11339151, 13122120, 15150271, 17345140, 19843056
Offset: 1
- Lars Blomberg, Table of n, a(n) for n = 1..35
- Scott R. Shannon, Pentagon regions for n = 1.
- Scott R. Shannon, Pentagon regions for n = 2.
- Scott R. Shannon, Pentagon regions for n = 3.
- Scott R. Shannon, Pentagon regions for n = 4.
- Scott R. Shannon, Pentagon regions for n = 5.
- Scott R. Shannon, Pentagon regions for n = 6.
- Scott R. Shannon, Pentagon regions for n = 7.
- Scott R. Shannon, Pentagon regions for n = 8.
- Scott R. Shannon, Pentagon regions for n = 5, random distance-based coloring.
- Scott R. Shannon, Pentagon regions for n = 6, random distance-based coloring
- Wikipedia, Pentagon.
A288187
Triangle read by rows: T(n,m) (n >= m >= 1) = number of chambers (or regions) formed by drawing the line segments connecting any two of the (n+1) X (m+1) lattice points in an n X m lattice polygon.
Original entry on oeis.org
4, 16, 56, 46, 176, 520, 104, 388, 1152, 2584, 214, 822, 2502, 5700, 12368, 380, 1452, 4392, 9944, 21504, 37400, 648, 2516, 7644, 17380, 37572, 65810, 115532, 1028, 3952, 12120, 27572, 59784, 105128, 184442, 294040, 1562, 6060, 18476, 42066, 91654, 161352, 282754, 450864, 690816
Offset: 1
The diagonals of the 1 X 1 lattice polygon, i.e. the square, cut it into 4 triangles. Therefore T(1,1)=4.
Triangle begins
4,
16, 56,
46, 176, 520,
104, 388, 1152, 2584,
214, 822, 2502, 5700, 12368,
...
- Lars Blomberg, Table of n, a(n) for n = 1..325 (The first 25 rows)
- Lars Blomberg, Colored illustration for 3 x 3
- Lars Blomberg, Colored illustration for 4 X 4
- Lars Blomberg, Colored illustration for 5 X 3
- Lars Blomberg, Colored illustration for 5 X 5
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- Huntington Tracy Hall, Counterexamples in Discrete Geometry. Dissertation, Department of Mathematics, University of California Berkeley, Fall 2004.
- Serkan Hosten, Diane Maclagan, Bernd Sturmfels, Supernormal Vector Configurations, arXiv:math/0105036 [math.CO], 4 May 2001.
- Marc E. Pfetsch, Günter M. Ziegler, Large Chambers in a Lattice Polygon (Notes), March 28, 2001, December 13, 2004.
- Marc E. Pfetsch, Günter M. Ziegler, Large Chambers in a Lattice Polygon (Notes), March 28, 2001, December 13, 2004. [Cached copy, with permission]
- Hugo Pfoertner, Illustrations of Chamber Complexes up to 5 X 5.
If the initial points are arranged around a circle rather than a square we get
A006533 and
A007678.
T(3,3) corrected and rows for n=4..9 added by
Max Alekseyev, Apr 05 2019.
A358782
The number of regions formed when every pair of n points, placed at the vertices of a regular n-gon, are connected by a circle and where the points lie at the ends of the circle's diameter.
Original entry on oeis.org
1, 7, 12, 66, 85, 281, 264, 802, 821, 1893, 1740, 3810, 3725, 6871, 6448, 11748, 11125, 18317, 17160, 27616, 26797, 40067, 37176, 56826, 54653, 77707, 74788, 103734, 101041, 136835, 131744, 176584, 172109, 223931, 216900, 281090, 273829, 348583, 337480, 425950, 416641
Offset: 2
- Scott R. Shannon, Image for n = 2. In this and other images the points defining the circle diameters are show as white dots.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 6.
- Scott R. Shannon, Image for n = 7.
- Scott R. Shannon, Image for n = 8.
- Scott R. Shannon, Image for n = 9.
- Scott R. Shannon, Image for n = 10.
- Scott R. Shannon, Image for n = 11.
- Scott R. Shannon, Image for n = 12.
- Scott R. Shannon, Image for n = 17.
- Scott R. Shannon, Image for n = 20.
- Scott R. Shannon, Image for n = 23.
Comments