cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 69 results. Next

A350366 a(n) = [x^n] Product_{k=1..n} (1 + k*x)/(1 - k*x).

Original entry on oeis.org

1, 2, 18, 312, 8000, 271770, 11502162, 583036832, 34437042432, 2322677883330, 176137593178250, 14835018315726312, 1373972097646792800, 138787120025382437882, 15184417945878202716450, 1788809909368939651651200, 225755544056485027686459392
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[Series[Product[(1 + k*x)/(1 - k*x), {k, 1, n}], {x, 0, n}], x, n]; Array[a, 17, 0] (* Amiram Eldar, Dec 27 2021 *)
    Table[Sum[(-1)^(n - k)*StirlingS1[n + 1, k + 1] * StirlingS2[k + n, n], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 29 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*stirling(n+1, k+1, 1)*stirling(k+n, n, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * Stirling1(n+1, k+1) * Stirling2(k+n, n).
a(n) ~ c * d^n * (n-1)!, where d = (1+r) / ((-1 + exp(r + LambertW(-1, -exp(-r)*r))) * LambertW(-exp(-1-r)*(1+r))) = 8.406107401279769476199925123910168..., r = 0.7545302104650497245839827141610818561001159135034... is the root of the equation r*(1 + r + LambertW(-exp(-1 - r)*(1 + r))) = -(1 + r)*(r + LambertW(-1, -exp(-r)*r)) and c = 0.281498742412700978029375818376931142913157133987685... - Vaclav Kotesovec, Dec 29 2021

A350376 a(n) = [x^n] Product_{k=1..n} 1/(1 - k*x)^2.

Original entry on oeis.org

1, 2, 23, 480, 14627, 587580, 29331038, 1750923328, 121673580435, 9648709656300, 859874920598850, 85078769750118144, 9254316901029412110, 1097635452798476278232, 140986468651523106196060, 19496446561112852736019200, 2887977880849714395963280515
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[Series[Product[1/(1 - k*x)^2, {k, 1, n}], {x, 0, n}], x, n]; Array[a, 17, 0] (* Amiram Eldar, Dec 28 2021 *)
    Table[Sum[StirlingS2[n + k, n]*StirlingS2[2*n - k, n], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 29 2021 *)
  • PARI
    a(n) = sum(k=0, n, stirling(n+k, n, 2)*stirling(2*n-k, n, 2));

Formula

a(n) = Sum_{k=0..n} Stirling2(n+k, n) * Stirling2(2*n-k, n).
a(n) ~ c * d^n * (n-1)!, where d = 27 / (4*LambertW(-3*exp(-3/2)/2)^2 * (3 + 2*LambertW(-3*exp(-3/2)/2))) = 9.858422414446789720857925020919293523149... and c = sqrt(3/(-LambertW(-3*exp(-3/2)/2) * (1 + LambertW(-3*exp(-3/2)/2)))) / (4*Pi) = 0.28482428628793763109169664913715827647091747... - Vaclav Kotesovec, Dec 28 2021, updated May 14 2025

A187655 Self-convolution of the central Stirling numbers of the second kind.

Original entry on oeis.org

1, 2, 15, 194, 3631, 89712, 2764268, 102207394, 4411265695, 217707856946, 12092696127691, 746552539553152, 50708165735187572, 3757864633323765824, 301719332111553586612, 26089939284112306045362, 2417245528055399202851119
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Comments

The sequence of the central Stirling numbers of the second kind is 1, 1, 7, 90, 1701,... with offset 0 (see A007820).

Crossrefs

Cf. A187656.

Programs

  • Maple
    seq( add(combinat[stirling2](2*k,k) *combinat[stirling2](2*(n-k),n-k) ,k=0..n), n=0..12);
  • Mathematica
    Table[Sum[StirlingS2[2k, k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 16}]
  • Maxima
    makelist(sum(stirling2(2*k,k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);

Formula

a(n) = sum_{k=0..n} A048993(2k,k)*A048993(2n-2k,n-k).
a(n) ~ 2^(2*n+1/2) * n^(n-1/2) / (sqrt(Pi*(1-c)) * exp(n) * (c*(2-c))^n), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 20 2014

A242446 a(n) = Sum_{k=1..n} C(n,k) * k^(2*n).

Original entry on oeis.org

1, 18, 924, 93320, 15609240, 3903974592, 1364509038592, 635177480713344, 379867490829555840, 283825251434680651520, 259092157573229145859584, 283735986144895532781391872, 367138254141051794797009309696, 554136240038549806366753446051840
Offset: 1

Views

Author

Vaclav Kotesovec, May 14 2014

Keywords

Comments

Generally, for p>=1, a(n) = Sum_{k=1..n} C(n,k) * k^(p*n) is asymptotic to sqrt(r/(p+r-p*r)) * r^(p*n) * n^(p*n) / (exp(p*n) * (1-r)^n), where r = p/(p+LambertW(p*exp(-p))).
Sum_{k=1..n} (-1)^(n-k) * C(n,k) * k^(p*n) = n! * stirling2(p*n,n).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*k^(2*n),{k,1,n}],{n,1,20}]

Formula

a(n) ~ sqrt(r/(2-r)) * r^(2*n) * n^(2*n) / (exp(2*n) * (1-r)^n), where r = 2/(2+LambertW(2*exp(-2))).

A210029 Number of sequences over the alphabet of n symbols of length 2n which have n distinct symbols. Also number of placements of 2n balls into n cells where no cell is empty.

Original entry on oeis.org

1, 14, 540, 40824, 5103000, 953029440, 248619571200, 86355926616960, 38528927611574400, 21473732319740064000, 14620825330739032204800, 11941607887300551753216000, 11523529003703200697461248000, 12970646659082235068963297280000
Offset: 1

Views

Author

Washington Bomfim, Mar 16 2012

Keywords

Examples

			a(2) = 14 because the 2^4 sequences on 2 symbols of length 4 can be represented by 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100,1110, and 1111. Only two of them do not have n distinct symbols.
a(10)= 21473732319740064000 since all digits appear in 21473732319740064000 nonnegative integers with 20 digits.
O.g.f.: A(x) = 1 + 14*x + 540*x^2 + 40824*x^3 + 5103000*x^4 + ... where
A(x) = x/(1+x)^2 + 2^4*x^2/(1+4*x)^3 + 3^6*x^3/(1+9*x)^4 + 4^8*x^4/(1+16*x)^5 + 5^10*x^5/(1+25*x)^6 +... - _Paul D. Hanna_, Feb 24 2013
E.g.f.: E(x) = 1 + 14*x + 540*x^2/2! + 40824*x^3/3! + 5103000*x^4/4! + ... where
E(x) = exp(-x)*x + 2^4*exp(-4*x)*x^2/2! + 3^6*exp(-9*x)*x^3/3! + 4^8*exp(-16*x)*x^4/4! + 5^10*exp(-25*x)*x^5/5! +... - _Paul D. Hanna_, Feb 24 2013
		

Crossrefs

Programs

  • Maple
    P := proc(n) option remember; if n = 0 then return 1 fi;
    expand(add(binomial(n,k)*P(n-k)*x, k=1..n)) end:
    a := n -> coeff(P(2*n), x, n); # Peter Luschny, Sep 11 2019
  • Mathematica
    Table[Sum[((-1)^v*Binomial[n, v]*(n - v)^(2 n)), {v, 0, n - 1}], {n, 20}] (* T. D. Noe, Mar 16 2012 *)
  • PARI
    {a(n)=n!*polcoeff(sum(m=1, n, (m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!), n)} \\ Paul D. Hanna, Oct 26 2012
    
  • PARI
    {a(n)=polcoeff(sum(k=1, n, (k^2)^k*x^k/(1+k^2*x +x*O(x^n))^(k+1)), n)} for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 24 2013

Formula

a(n) = Sum_{v=0..n-1}( (-1)^v * binomial(n,v) * (n-v)^(2n) ).
a(n) = n! * S2(2*n,n), where S2(n,k) = A008277(n,k) are the Stirling numbers of the second kind. - Paul D. Hanna, Oct 26 2012 [Also the central column of A131689 (suggesting a(0) = 1). - Peter Luschny, Sep 11 2019]
E.g.f.: Sum_{n>=1} (n^2)^n * exp(-n^2*x) * x^n/n! = Sum_{n>=1} a(n)*x^n/n!. - Paul D. Hanna, Oct 26 2012
a(n) ~ n^(2*n)*(2/(exp(c)*(2-c)))^n / sqrt(1-c), where c = -LambertW(-2/exp(2)) = 0.406375739959959907676958... - Vaclav Kotesovec, Jan 02 2013
O.g.f.: Sum_{n>=1} n^(2*n) * x^n / (1 + n^2*x)^(n+1). - Paul D. Hanna, Feb 24 2013
a(n) = [x^n] P(2*n) where P(n) = Sum_{k=1..n} binomial(n, k)*P(n-k)*x based in P(0) = 1. - Peter Luschny, Sep 11 2019

A256500 Decimal expansion of the positive solution to x = 2*(1-exp(-x)).

Original entry on oeis.org

1, 5, 9, 3, 6, 2, 4, 2, 6, 0, 0, 4, 0, 0, 4, 0, 0, 9, 2, 3, 2, 3, 0, 4, 1, 8, 7, 5, 8, 7, 5, 1, 6, 0, 2, 4, 1, 7, 8, 9, 0, 0, 2, 4, 2, 4, 8, 1, 8, 8, 5, 9, 3, 6, 4, 9, 9, 9, 5, 0, 4, 5, 1, 1, 6, 9, 6, 0, 8, 4, 9, 8, 4, 8, 1, 6, 1, 8, 7, 9, 5, 0, 2, 3, 2, 7, 4, 9, 9, 2, 7, 6, 6, 1, 8, 4, 4, 0, 7, 1, 4, 1, 7, 0, 6
Offset: 1

Views

Author

Stanislav Sykora, Mar 31 2015

Keywords

Comments

Each of the positive solutions to x = q*(1-exp(-x)) obtained for q = 2, 3, 4, and 5, appears in several formulas pertinent to Planck's black-body radiation law. For a given q, the solution can be also written as q+W(-q/exp(q)), where W is the Lambert function. Here q = 2.
The constant appears in asymptotic formula for A007820. - Vladimir Reshetnikov, Oct 10 2016

Examples

			1.5936242600400400923230418758751602417890024248188593649995...
		

Crossrefs

Cf. A194567 (q=3), A256501 (q=4), A256502 (q=5).

Programs

  • Mathematica
    RealDigits[2 + LambertW[-2 Exp[-2]], 10, 100][[1]] (* Vladimir Reshetnikov, Oct 10 2016 *)
  • PARI
    a2=solve(x=0.1,10,x-2*(1-exp(-x))) \\ Use real precision in excess

Formula

Equals 2*(1-A106533). - Miko Labalan, Dec 18 2024
Equals log(A229553). - Hugo Pfoertner, Dec 19 2024

A383862 a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^3.

Original entry on oeis.org

1, 3, 48, 1386, 58278, 3225915, 221726711, 18216234288, 1741626159966, 189977753488050, 23285057201978520, 3168272346322892094, 473878954663846060735, 77281168674525142984020, 13647787698908399220563400, 2594721838238358445753776000, 528401900314147344955336365822
Offset: 0

Views

Author

Seiichi Manyama, May 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
    (* or *)
    Table[Sum[StirlingS2[i + n, n] * StirlingS2[j + n, n] * StirlingS2[2*n - i - j, n], {i, 0, n}, {j, 0, n-i}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
  • PARI
    a(n) = sum(i=0, n, sum(j=0, n-i, stirling(i+n, n, 2)*stirling(j+n, n, 2)*stirling(2*n-i-j, n, 2)));

Formula

a(n) = Sum_{i, j, k>=0 and i+j+k=n} Stirling2(i+n,n) * Stirling2(j+n,n) * Stirling2(k+n,n).
a(n) ~ 2^(8*n + 3/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * exp(n) * 3^(3*n + 3/2) * (4 - 3*w)^n * w^(3*n + 1)), where w = -LambertW(-4*exp(-4/3)/3) = 0.727473355414332993149219573314579663... - Vaclav Kotesovec, May 18 2025

A242449 a(n) = Sum_{k=0..n} C(n,k) * (2*k+1)^(2*n+1).

Original entry on oeis.org

1, 28, 3612, 1064480, 560632400, 462479403072, 550095467201728, 891290348282967040, 1887146395301619304704, 5058811707344107766328320, 16746136671945501439084657664, 67088193422344140016282100785152, 319900900946743851959321101768511488
Offset: 0

Views

Author

Vaclav Kotesovec, May 14 2014

Keywords

Comments

Generally, for p>=1, a(n) = Sum_{k=0..n} C(n,k) * (p*k+1)^(p*n+1) is asymptotic to n^(p*n+1) * p^(p*n+1) * r^(p*n+3/2+1/p) / (sqrt(p+r-p*r) * exp(p*n) * (1-r)^(n+1/p)), where r = p/(p+LambertW(p*exp(-p))).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*(2*k+1)^(2*n+1),{k,0,n}],{n,0,20}]
  • PARI
    for(n=0,30, print1(sum(k=0,n, binomial(n,k)*(2*k+1)^(2*n+1)), ", ")) \\ G. C. Greubel, Nov 16 2017

Formula

a(n) ~ n^(2*n+1) * 2^(2*n+1) * r^(2*n+2) / (sqrt(2-r) * exp(2*n) * (1-r)^(n+1/2)), where r = 2/(2+LambertW(2*exp(-2))) = 0.901829091937052...

A384060 a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^4.

Original entry on oeis.org

1, 4, 82, 3024, 162154, 11438280, 1001454024, 104777127616, 12755141675754, 1771354690734420, 276386332002204450, 47870892086756660064, 9113932961179205496744, 1891845220489637114281216, 425240943851497448491619600, 102899751348092720847554016000
Offset: 0

Views

Author

Vaclav Kotesovec, May 18 2025

Keywords

Comments

In general, for m>=1, [x^n] Product_{k=0..n} 1/(1 - k*x)^m ~ (m+1)^((m+1)*n + (m-1)/2) * n^(n - 1/2) / (sqrt(2*Pi*(1-w)) * exp(n) * (m+1-m*w)^n * m^(m*(n + 1/2)) * w^(m*n + (m-1)/2)), where w = -LambertW(-(m+1)*exp(-(m+1)/m)/m).
The general formula is valid even for m=n, where after modifications we get the formula for A351508.

Crossrefs

Cf. A007820 (m=1), A350376 (m=2), A383862 (m=3), A351508 (m=n).
Cf. A384031.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 15}]

Formula

a(n) = Sum_{i, j, k, l>=0 and i+j+k+l=n} Stirling2(i+n,n) * Stirling2(j+n,n) * Stirling2(k+n,n) * Stirling2(l+n,n). - Seiichi Manyama, May 18 2025
a(n) ~ 5^(5*n + 3/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * 2^(8*n + 9/2) * exp(n) * (5 - 4*w)^n * w^(4*n + 3/2)), where w = -LambertW(-5*exp(-5/4)/4) = 0.7857872456211833502961937693700363613539172187... - Vaclav Kotesovec, May 18 2025

A218141 a(n) = Stirling2(n^2, n).

Original entry on oeis.org

1, 1, 7, 3025, 171798901, 2436684974110751, 14204422416132896951197888, 50789872166903636182659702516635946082, 155440114706926165785630654089245708839702615196926765, 541500903058656141876322139677626107784896646583041951351456223689104719
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 7*x^2 + 3025*x^3 + 171798901*x^4 + 2436684974110751*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[n^2, n],{n,0,10}] (* Vaclav Kotesovec, May 11 2014 *)
  • Maxima
    makelist(stirling2(n^2,n),n,0,30 ); /* Martin Ettl, Oct 21 2012 */
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(k^n)^k*exp(-k^n*x +x*O(x^n))*x^k/k!),n)}
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(n^2+1))), n^2-n)}
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = Stirling2(n^2, n)}
    for(n=0, 10, print1(a(n), ", "))
    

Formula

a(n) = [x^n] Sum_{k>=0} k^(n*k) * exp(-k^n*x) * x^k / k!.
a(n) = [x^(n^2-n)] 1 / Product_{k=1..n} (1-k*x).
a(n) ~ n^(n^2)/n!. - Vaclav Kotesovec, May 11 2014
Previous Showing 11-20 of 69 results. Next