cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 315 results. Next

A038369 Numbers k such that k = (product of digits of k) * (sum of digits of k).

Original entry on oeis.org

0, 1, 135, 144
Offset: 1

Views

Author

Keywords

Comments

The list is complete. Proof: One shows that the number of digits is at most 84 and then it is only necessary to consider numbers of the forms 2^i*3^j*7^k and 3^i*5^j*7^k. - David W. Wilson, May 16 2003

Examples

			144 belongs to the sequence because 1*4*4=16, 1+4+4=9 -> 16*9=144
		

Crossrefs

Programs

  • Mathematica
    pdsdQ[n_]:=Module[{idn=IntegerDigits[n]},(Total[idn]Times@@idn)==n]; Select[Range[0,150],pdsdQ]  (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    is(n)=my(d=digits(n)); factorback(d)*vecsum(d)==n \\ Charles R Greathouse IV, Feb 06 2017

Formula

a(n) = A007953(a(n)) * A007954(a(n)).

A068191 Numbers n such that A067734(n)=0; complement of A002473; at least one prime-factor of n is larger than 7, it has 2 decimal digits.

Original entry on oeis.org

11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

Also numbers n such that A198487(n) = 0 and A107698(n) = 0. - Jaroslav Krizek, Nov 04 2011
A086299(a(n)) = 0. - Reinhard Zumkeller, Apr 01 2012
A262401(a(n)) < a(n). - Reinhard Zumkeller, Sep 25 2015
Numbers not in A007954. - Mohammed Yaseen, Sep 13 2022

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a068191 n = a068191_list !! (n-1)
    a068191_list = map (+ 1) $ elemIndices 0 a086299_list
    -- Reinhard Zumkeller, Apr 01 2012
    
  • Mathematica
    Select[Range@120, Last@Map[First, FactorInteger@#] > 7 &] (* Vincenzo Librandi, Sep 19 2016 *)
  • Python
    from sympy import integer_log
    def A068191(n):
        def f(x):
            c = n
            for i in range(integer_log(x,7)[0]+1):
                i7 = 7**i
                m = x//i7
                for j in range(integer_log(m,5)[0]+1):
                    j5 = 5**j
                    r = m//j5
                    for k in range(integer_log(r,3)[0]+1):
                        c += (r//3**k).bit_length()
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Sep 16 2024

A336826 Bogotá numbers: numbers k such that k = m*p(m) where p(m) is the digital product of m.

Original entry on oeis.org

0, 1, 4, 9, 11, 16, 24, 25, 36, 39, 42, 49, 56, 64, 75, 81, 88, 93, 96, 111, 119, 138, 144, 164, 171, 192, 224, 242, 250, 255, 297, 312, 336, 339, 366, 378, 393, 408, 422, 448, 456, 488, 497, 516, 520, 522, 525, 564, 575, 648, 696, 704, 738, 744, 755, 777, 792
Offset: 1

Views

Author

Sean A. Irvine, Aug 05 2020

Keywords

Comments

Named Bogotá numbers by Tomás Uribe and Juan Pablo Fernández based on similarity of the construction to the Colombian numbers (A003052).
Some questions about these numbers:
(i) Some Bogotá numbers occur in pairs (such as 24 and 25). Are there infinitely many such pairs?
(ii) More generally, can arbitrarily long sets of consecutive numbers be found all of which are Bogotá numbers?
(iii) Can the gap between two consecutive Bogotá numbers be arbitrarily large? Answer: Yes.
From David A. Corneth, Aug 06 2020: (Start)
The only primes in this sequence are A004022.
To see if a number is a Bogotá number, we only have to look at its 7-smooth divisors. Proof: If a number k is a Bogotá number then k = m*p(m) where p(m) is 7-smooth as it's a product of digits. Furthermore, if k = m*p(m) then p(m) | k. Q.e.d. Below is an example using this idea.
To find Bogotá numbers k up to N we can make a list of 7-smooth numbers up to sqrt(N) and list the factorizations into single-digit numbers of each of these 7-smooth numbers that when concatenated give m such that m * p(m) = k where p(m) is that 7-smooth number.
For example, 10 is a 7-smooth number. Its factorizations into single-digit numbers are 2*5, 5*2, 1*2*5 and so on. This tells us that 10*25 = 250, 10*52 = 520, 10*125 = 1250 all are Bogotá numbers.
Similarily we can find odd Bogotá numbers to then find consecutive Bogotá numbers (See A336864). (End)

Examples

			From _David A. Corneth_, Aug 06 2020: (Start)
520 is a term because 52 * p(52) = 52 * 10 = 520.
Example using we only have to look at 7-smooth divisors:
520 is a term as its 7-smooth divisors d are 1, 2, 4, 5, 8, 10, 20, 40. values 520/d are 520, 260, 130, 104, 65, 52, 26, 13 of which 52 * (5*2) = 520 where (5*2) are the products of 52. (End)
		

Crossrefs

Programs

  • PARI
    f(n) = vecprod(digits(n))*n; \\ A098736
    isok(n) = my(k=0); for (k=0, n, if (f(k) == n, return(1))); \\ Michel Marcus, Aug 06 2020
    
  • PARI
    is(n) = { my(f = factor(n), s7 = 1, d, sl = sqrtint(n)); for(i = 1, #f~, if(f[i, 1] > 7, break ); s7 *= f[i, 1]^f[i, 2]; ); d = divisors(s7); for(i = 1, #d, if(d[i] > sl, return(0)); if(n/d[i] * vecprod(digits(n/d[i])) == n, return(1); ) ); 0 } \\ David A. Corneth, Aug 06 2020

A061762 a(n) = (sum of digits of n) + (product of digits of n).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 7, 15, 23, 31, 39, 47
Offset: 0

Views

Author

Amarnath Murthy, May 20 2001

Keywords

Comments

Fixed points a(m) = m are m = {0, 19, 29, 39, 49, 59, 69, 79, 89, 99}. Is this list complete? - Zak Seidov, Aug 22 2007
The above list of fixed points is complete. If a(m) = m, then m < 10^21 and there are no other fixed points below 10^21. - Chai Wah Wu, Aug 14 2017
All numbers are in this sequence. Proof: One can create a number m whose digital sum is any number p and one can create a number k by concatenating digit "0" to m. Then this number k will be a term. - Metin Sariyar, Oct 29 2019

Examples

			a(14) = 1+4 + 1*4 = 9.
		

References

  • S. Parmeswaran, S+P numbers, Mathematics Informatics Quarterly, Vol. 9, No. 3 (Sep 1999), Bulgaria.

Crossrefs

See A130858 for the smallest inverse.

Programs

  • Magma
    [0] cat [&+Intseq(n)+&*Intseq(n): n in [1..80]];// Vincenzo Librandi, Jan 03 2020
  • Maple
    read("transforms") :
    A061762 := proc(n)
        digsum(n)+A007954(n) ;
    end proc: # R. J. Mathar, Aug 13 2012
  • Mathematica
    Table[Plus @@ IntegerDigits[n] + Times @@ IntegerDigits[n], {n, 0, 75}] (* Jayanta Basu, Apr 05 2013 *)
  • PARI
    a(n) = if (n==0, 0, my(d=digits(n)); vecsum(d) + vecprod(d)); \\ Michel Marcus, Oct 29 2019, Jan 03 2020
    
  • Python
    from operator import mul
    from functools import reduce
    def A061762(n):
        a = [int(d) for d in str(n)]
        return sum(a)+reduce(mul,a) # Chai Wah Wu, Aug 14 2017
    

Formula

a(n) = A007953(n) + A007954(n).

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org) and Matthew Conroy, May 23 2001

A230099 a(n) = n + (product of digits of n).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 70, 78, 86, 94, 102, 110, 118, 126
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2013

Keywords

Comments

A230099, A063114, A098736, A230101 are analogs of A092391 and A062028.

Crossrefs

Programs

  • Haskell
    a230099 n = a007954 n + n  -- Reinhard Zumkeller, Oct 13 2013
    
  • Maple
    with transforms; [seq(n+digprod(n), n=0..200)];
  • PARI
    a(n) = if (n, n + vecprod(digits(n)), 0); \\ Michel Marcus, Dec 18 2018
    
  • Python
    from math import prod
    def a(n): return n + prod(map(int, str(n)))
    print([a(n) for n in range(78)]) # Michael S. Branicky, Jan 09 2023

Formula

a(n) = n iff n contains a digit 0 (A011540). - Bernard Schott, Jul 31 2023

A035930 Maximal product of any two numbers whose concatenation is n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 10, 20, 30, 40, 50, 60, 70
Offset: 0

Views

Author

Keywords

Comments

Agrees up to a(100) = 0 with A088117, A171765 and A257297, but all of the four differ in a(101) and subsequent values. - M. F. Hasler, Sep 01 2021

Examples

			a(341) = max(34*1,3*41) = 123.
		

Crossrefs

Different from A007954, A088117, A171765 and A257297. Cf. A035931-A035935.

Programs

  • Haskell
    a035930 n | n < 10    = 0
              | otherwise = maximum $ zipWith (*)
                (map read $ init $ tail $ inits $ show n)
                (map read $ tail $ init $ tails $ show n)
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Maple
    a:= proc(n) local l, m; l:= convert(n, base, 10); m:= nops(l);
          `if`(m<2, 0, max(seq(parse(cat(seq(l[m-i], i=0..j-1)))
           *parse(cat(seq(l[m-i], i=j..m-1))), j=1..m)))
        end:
    seq(a(n), n=0..120);  # Alois P. Heinz, May 22 2009
  • Mathematica
    Flatten[With[{c=Range[0,9]},Table[c*n,{n,0,10}]]] (* Harvey P. Dale, Jun 07 2012 *)
  • PARI
    apply( {A035930(n)=if(n>9,vecmax([vecprod(divrem( n,10^j))|j<-[1..logint(n,10)]]))}, [0..111]) \\ M. F. Hasler, Sep 01 2021
    
  • Python
    def a(n):
        s = str(n)
        return max((int(s[:i])*int(s[i:]) for i in range(1, len(s))), default=0)
    print([a(n) for n in range(108)]) # Michael S. Branicky, Sep 01 2021

Extensions

An erroneous formula was deleted by N. J. A. Sloane, Dec 23 2008

A068189 Smallest positive number whose product of digits equals n, or a(n)=0 if no such number exists, i.e. when n has a prime divisor greater than 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 25, 0, 26, 0, 27, 35, 28, 0, 29, 0, 45, 37, 0, 0, 38, 55, 0, 39, 47, 0, 56, 0, 48, 0, 0, 57, 49, 0, 0, 0, 58, 0, 67, 0, 0, 59, 0, 0, 68, 77, 255, 0, 0, 0, 69, 0, 78, 0, 0, 0, 256, 0, 0, 79, 88, 0, 0, 0, 0, 0, 257, 0, 89, 0, 0, 355, 0, 0, 0, 0, 258, 99, 0, 0, 267, 0
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

a(n) > 0 if and only if n is in A002473.

Examples

			n=2,10,50,250 gives a(n)=2,25,255,2555; n=11,39,78, etc..a(n)=0.
10000 = 2 * 5 * 5 * 5 * 5 * 8. No product of two of these factors is less than 10 so a(10000) = 255558 (the concatenation of these factors in nondecreasing order). - _David A. Corneth_, Jul 31 2017
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Apply[Times, IntegerDigits[x]] a = Table[0, {256} ]; Do[ b = f[n]; If[b < 257 && a[[b]] == 0, a[[b]] =n], {n, 1, 10000} ]; a
  • PARI
    a(n) = {if(n==1, return(1)); my(res = []); forstep(i=9,2,-1, v = valuation(n, i); if(v > 0, res = concat(vector(v, j, i), res); n/=i^v)); if(n==1,fromdigits(res), 0)} \\ David A. Corneth, Jul 31 2017
    
  • Python
    def convert(n):
        if n == 1:
            return 1
        result = 0
        cur = 1
        while n > 1:
            found = False
            for i in range(9, 1, -1):
                if n % i == 0:
                    result += cur * i
                    cur *= 10
                    n //= i
                    found = True
                    break
            if not found:
                return 0
        return result
    N = 256
    for n in range(1, N):
        print(n, convert(n))
    # Dmitry Kamenetsky, Oct 20 2008

A257850 a(n) = floor(n/10) * (n mod 10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8
Offset: 0

Views

Author

M. F. Hasler, May 10 2015

Keywords

Comments

Equivalently, write n in base 10, multiply the last digit by the number with its last digit removed.
See A142150(n-1) for the base 2 analog and A257843 - A257849 for the base 3 - base 9 variants.
The first 100 terms coincide with those of A035930 (maximal product of any two numbers whose concatenation is n), A171765 (product of digits of n, or 0 for n<10), A257297 ((initial digit of n)*(n with initial digit removed)), but the sequence is of course different from each of these three.
The terms a(10) - a(100) also coincide with those of A007954 (product of decimal digits of n).

Crossrefs

Cf. A142150 (the base 2 analog), A115273, A257844 - A257849.

Programs

  • Magma
    [Floor(n/10)*(n mod 10): n in [0..100]]; // Vincenzo Librandi, May 11 2015
    
  • Mathematica
    Table[Floor[n/10] Mod[n, 10], {n, 100}] (* Vincenzo Librandi, May 11 2015 *)
  • PARI
    a(n,b=10)=(n=divrem(n,b))[1]*n[2]
    
  • Python
    def A257850(n): return n//10*(n%10) # M. F. Hasler, Sep 01 2021

Formula

a(n) = 2*a(n-10)-a(n-20). - Colin Barker, May 11 2015
G.f.: x^11*(9*x^8+8*x^7+7*x^6+6*x^5+5*x^4+4*x^3+3*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^4-x^3+x^2-x+1)^2*(x^4+x^3+x^2+x+1)^2). - Colin Barker, May 11 2015

A208575 Product of digits of n in factorial base.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 3, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 3, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 4, 0, 8, 0, 0, 0, 6, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 6, 0, 0, 0, 6, 0, 12, 0, 0, 0, 9, 0, 18
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    (* For the definition of the factorial base version of IntegerDigits, see A007623 *) Table[Times@@factBaseIntDs[n], {n, 0, 99}] (* Alonso del Arte, Feb 28 2012 *)
  • PARI
    a(n)=my(k=1,s=1);while(n,s*=n%k++;n\=k);s
    
  • Python
    from functools import reduce
    from operator import mul
    def A(n, p=2):
        return n if n

A028842 Numbers whose product of digits is prime.

Original entry on oeis.org

2, 3, 5, 7, 12, 13, 15, 17, 21, 31, 51, 71, 112, 113, 115, 117, 121, 131, 151, 171, 211, 311, 511, 711, 1112, 1113, 1115, 1117, 1121, 1131, 1151, 1171, 1211, 1311, 1511, 1711, 2111, 3111, 5111, 7111, 11112, 11113, 11115, 11117, 11121, 11131, 11151
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007954, A028843, A028834, A046703 (subsequence of primes).

Programs

  • Mathematica
    Select[Range[11160], PrimeQ[Times@@IntegerDigits[#]] &] (* Jayanta Basu, Jun 02 2013 *)
  • PARI
    isok(n) = isprime(vecprod(digits(n))); \\ Michel Marcus, Apr 17 2020
    
  • PARI
    is(n)=my(d=digits(n),p); for(i=1,#d,if(d[i]==1,next); if(isprime(d[i]) && !p, p=1, return(0))); p \\ Charles R Greathouse IV, Apr 18 2020
  • Sage
    [x for x in range(10^5) if (prod(Integer(x).digits(base=10))) in Primes()] # Bruno Berselli, May 05 2014
    
  • Scala
    (1 to 10000).filter(n => List(2, 3, 5, 7).contains(n.toString.toCharArray.map( - 48).scanRight(1)( * ).head)) // _Alonso del Arte, Apr 14 2020
    

Extensions

More terms from Erich Friedman.
Name edited by Jianing Song, Jul 07 2025
Previous Showing 51-60 of 315 results. Next