cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 141 results. Next

A344576 a(n) = f(n,n) where f(0,n) = f(n,0) = Fibonacci(n) and f(m,n) = f(m-1,n) + f(m,n-1) + f(m-1,n-1).

Original entry on oeis.org

0, 2, 10, 52, 278, 1510, 8288, 45834, 254922, 1424252, 7986550, 44921582, 253320352, 1431678194, 8106897418, 45982821860, 261206625526, 1485765938390, 8461264982176, 48237937154554, 275275548126890, 1572297656021292, 8987888015996790, 51417128080562142
Offset: 0

Views

Author

Keywords

Comments

a(n+1)/a(n) tends to A156035.

Crossrefs

Programs

  • Mathematica
    F[0, 0] = 0; F[m_, 0] := Fibonacci[m]; F[0, n_] := Fibonacci[n];
    F[m_, n_] := F[m, n] =   F[m - 1 , n ] + F[m , n - 1] +  F[m - 1, n - 1];
    Table[F[n, n], {n, 0, 100}]
  • PARI
    \\ here D(n,k) is A008288(n,k).
    D(n, k) = {sum(d = 0, min(n,k), binomial(k, d)*binomial(n+k-d, k))}
    a(n) = {2*sum(k=1, n, fibonacci(k)*(D(n-1,n-k) + D(n-1,n-k-1)))} \\ Andrew Howroyd, May 29 2021

Formula

a(n) = 2*Sum_{k=1..n} Fibonacci(k)*(A008288(n-1,n-k) + A008288(n-1,n-k-1)). - Andrew Howroyd, May 29 2021
G.f.: x*(3*x^2-18*x+3-(x+1)*sqrt(x^2-6*x+1))/((x^2-7*x+1)*(x^2-6*x+1)). - Alois P. Heinz, May 29 2021
a(n) = ((79-97*n+26*n^2)*a(n-1) + (-9+9*n-2*n^2)*a(n-4) + (107-111*n+26*n^2)*a(n-3) + (-322+352*n-88*n^2)*a(n-2)) / (5-7*n+2*n^2) for n >= 4. - José María Grau Ribas, Jun 19 2021

A364553 Number of edges in the n-Pell graph.

Original entry on oeis.org

0, 1, 5, 18, 58, 175, 507, 1428, 3940, 10701, 28705, 76230, 200766, 525083, 1365175, 3531240, 9093512, 23325785, 59625981, 151947066, 386139650, 978834759, 2475645491, 6248406780, 15740857452, 39585199525, 99389810585, 249177006702, 623846750086, 1559888545075
Offset: 0

Views

Author

Eric W. Weisstein, Jul 28 2023

Keywords

Comments

For n > 0, also the number of maximum and maximal cliques in the n-Pell graph.

Crossrefs

Programs

  • Maple
    A364553 := n -> (n/8)*((2 + sqrt(2))*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n): seq(simplify(A364553(n)), n=0..29); # Peter Luschny, Jul 30 2023
  • Mathematica
    Table[n Fibonacci[n + 1, 2]/2, {n, 0, 20}]
    Table[n (Fibonacci[n, 2] + (-I)^n ChebyshevT[n, I])/2, {n, 0, 20}]
    Table[With[{s = Sqrt[2]}, n ((s + 2) (1 + s)^n - (s - 2) (1 - s)^n)/8], {n, 0, 20}] // Expand
    LinearRecurrence[{4, -2, -4, -1}, {0, 1, 5, 18}, 20]
    CoefficientList[Series[x (1 + x)/(-1 + 2 x + x^2)^2, {x, 0, 20}], x]
  • Python
    # Using function 'delannoy_row' from A008288.
    def A364553(n:int) -> int:
        return sum(k * delannoy_row(n)[k] for k in range(n + 1))
    print([A364553(n) for n in range(30)])  # Peter Luschny, Jul 30 2023

Formula

a(n) = n*(A000129(n) + A001333(n))/2.
a(n) = n*A000129(n+1)/2.
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4).
G.f.: x*(1+x)/(-1+2*x+x^2)^2.
From Peter Luschny, Jul 31 2023: (Start)
a(n) = (n/8)*((2 + sqrt(2))*(1 + sqrt(2))^n - (sqrt(2) - 2)*(1 - sqrt(2))^n).
With this formula, the sequence can be continued to the left half of the number line: a(-n) = -(-1)^n*A026937(n-2) for n >= 0.
a(n) = (A093967(n) + A364636(n)) / 2.
a(n) = Sum_{k=0..n} k * A008288(n, k). (End)

A382436 Triangle read by rows, defined by the two-variable g.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 9, 17, 9, 1, 1, 12, 36, 36, 12, 1, 1, 15, 64, 101, 64, 15, 1, 1, 18, 101, 227, 227, 101, 18, 1, 1, 21, 147, 440, 627, 440, 147, 21, 1, 1, 24, 202, 767, 1459, 1459, 767, 202, 24, 1, 1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1
Offset: 0

Views

Author

F. Chapoton, Mar 25 2025

Keywords

Comments

The original definition was "Decomposition of A077938".
Every row is symmetric.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   6,    1;
  1,  9,  17,    9,    1;
  1, 12,  36,   36,   12,    1;
  1, 15,  64,  101,   64,   15,    1;
  1, 18, 101,  227,  227,  101,   18,    1;
  1, 21, 147,  440,  627,  440,  147,   21,   1;
  1, 24, 202,  767, 1459, 1459,  767,  202,  24,  1;
  1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1;
  ...
		

Crossrefs

Similar to A008288, A103450, and A382444.
Row sums are A077938.
T(2n, n) gives A339565.
Cf. A056594.

Programs

  • Sage
    y = polygen(QQ, 'y')
    x = y.parent()[['x']].gen()
    inverse = 1 + (-y - 1)*x - y*x^2 + (-y^2 - y)*x^3
    gf = 1 / inverse
    [list(u) for u in list(gf.O(11))]

Formula

G.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).
Sum_{k=0..n} (-1)^k * T(n,k) = A056594(n). - Alois P. Heinz, Mar 25 2025

A099605 Triangle, read by rows, such that row n equals the inverse binomial transform of column n of the triangle A034870 of coefficients in successive powers of the trinomial (1+2*x+x^2), omitting leading zeros.

Original entry on oeis.org

1, 2, 2, 1, 5, 4, 4, 16, 20, 8, 1, 14, 41, 44, 16, 6, 50, 146, 198, 128, 32, 1, 27, 155, 377, 456, 272, 64, 8, 112, 560, 1408, 1992, 1616, 704, 128, 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256, 10, 210, 1572, 6084, 14002, 20330, 18880, 10912, 3584, 512, 1, 65
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2004

Keywords

Comments

Row sums form A099606, where A099606(n) = Pell(n+1)*2^[(n+1)/2]. Central coefficients of even-indexed rows form A026000, where A026000(n) = T(2n,n), where T = Delannoy triangle (A008288). Antidiagonal sums form A099607.

Examples

			Rows begin:
[1],
[2,2],
[1,5,4],
[4,16,20,8],
[1,14,41,44,16],
[6,50,146,198,128,32],
[1,27,155,377,456,272,64],
[8,112,560,1408,1992,1616,704,128],
[1,44,406,1652,3649,4712,3568,1472,256],
[10,210,1572,6084,14002,20330,18880,10912,3584,512],
[1,65,870,5202,17469,36365,48940,42800,23552,7424,1024],...
The binomial transform of row 2 equals column 2 of A034870:
BINOMIAL[1,5,4] = [1,6,15,28,45,66,91,120,153,...].
The binomial transform of row 3 equals column 3 of A034870:
BINOMIAL[4,16,20,8] = [4,20,56,120,220,364,560,...].
The binomial transform of row 4 equals column 4 of A034870:
BINOMIAL[1,14,41,44,16] = [1,15,70,210,495,1001,...].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[(1 + 2*(y + 1)*x - (y + 1)*x^2)/(1 - (2*y + 1)*(2*y + 2)*x^2 + (y + 1)^2*x^4), {x, 0, 49}, {y, 0, 49}], x],
      y] // Flatten (* G. C. Greubel, Apr 14 2017 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff((1+2*(y+1)*x-(y+1)*x^2)/(1-(2*y+1)*(2*y+2)*x^2+(y+1)^2*x^4)+x*O(x^n),n,x)+y*O(y^k),k,y)}

Formula

G.f.: (1+2*(y+1)*x-(y+1)*x^2)/(1-(2*y+1)*(2*y+2)*x^2+(y+1)^2*x^4). T(n, n) = 2^n.

A102662 Triangle read by rows: T(1,1)=1,T(2,1)=1,T(2,2)=3, T(k-1,r-1)+T(k-1,r)+T(k-2,r-1).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 1, 7, 11, 3, 1, 9, 23, 17, 3, 1, 11, 39, 51, 23, 3, 1, 13, 59, 113, 91, 29, 3, 1, 15, 83, 211, 255, 143, 35, 3, 1, 17, 111, 353, 579, 489, 207, 41, 3, 1, 19, 143, 547, 1143, 1323, 839, 283, 47, 3, 1, 21, 179, 801, 2043, 3045, 2651, 1329, 371, 53, 3, 1, 23, 219
Offset: 1

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 03 2005

Keywords

Comments

Generalization of A008288 (use initial terms 1,1,3). Triangle seen as lower triangular matrix: The absolute values of the coefficients of the characteristic polynomials of the n X n matrix are the (n+1)th row of A038763. Row sums give A048654.

Examples

			Triangle begins:
  1
  1 3
  1 5 3
  1 7 11 3
  1 9 23 17 3
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

Programs

  • Haskell
    a102662 n k = a102662_tabl !! n !! k
    a102662_row n = a102662_tabl !! n
    a102662_tabl = [1] : [1,3] : f [1] [1,3] where
       f xs ys = zs : f ys zs where
         zs = zipWith (+) ([0] ++ xs ++ [0]) $
                          zipWith (+) ([0] ++ ys) (ys ++ [0])
    -- Reinhard Zumkeller, Feb 23 2012
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A207624 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A102662 *)
    (* Clark Kimberling, Feb 20 2012 *)
  • PARI
    T(k,r)=if(r>k,0,if(k==1,1,if(k==2,if(r==1,1,3),if(r==1,1,if(r==k,3,T(k-1,r-1)+T(k-1,r)+T(k-2,r-1))))))
    BM(n) = M=matrix(n,n);for(i=1,n, for(j=1,n,M[i,j]=T(i,j)));M
    M=BM(10)
    for(i=1,10,s=0;for(j=1,i,s+=M[i,j]);print1(s,","))
    

Formula

From Clark Kimberling, Feb 20 2012: (Start)
A102662=v and A207624=u, defined together as follows:
u(n,x)=u(n-1,x)+v(n-1,x), v(n,x)=2*x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1; see the Mathematica section. (End)

A108350 Number triangle T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*((j+1) mod 2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 32, 21, 6, 1, 1, 7, 31, 65, 65, 31, 7, 1, 1, 8, 43, 116, 161, 116, 43, 8, 1, 1, 9, 57, 189, 341, 341, 189, 57, 9, 1, 1, 10, 73, 288, 645, 842, 645, 288, 73, 10, 1, 1, 11, 91, 417, 1121, 1827, 1827, 1121, 417, 91
Offset: 0

Views

Author

Paul Barry, May 31 2005

Keywords

Comments

Or as a square array read by antidiagonals, T(n,k) = Sum_{j=0..n} binomial(k,j)*binomial(n+k-j,k)*((j+1) mod 2).
A symmetric number triangle based on 1/(1-x^2).
The construction of a symmetric triangle in this example is general. Let f(n) be a sequence, preferably with f(0)=1. Then T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*f(j) yields a symmetric triangle. When f(n)=1^n, we get Pascal's triangle. When f(n)=2^n, we get the Delannoy triangle (see A008288). In general, f(n)=k^n yields a (1,k,1)-Pascal triangle (see A081577, A081578). Row sums of triangle are A100131. Diagonal sums of the triangle are A108351. Triangle mod 2 is A106465.

Examples

			Triangle rows begin
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,  1;
  1,  4,  7,  4,  1;
  1,  5, 13, 13,  5,  1;
  1,  6, 21, 32, 21,  6,  1;
As a square array read by antidiagonals, rows begin
  1, 1,  1,   1,   1,    1,    1, ...
  1, 2,  3,   4,   5,    6,    7, ...
  1, 3,  7,  13,  21,   31,   43, ...
  1, 4, 13,  32,  65,  116,  189, ...
  1, 5, 21,  65, 161,  341,  645, ...
  1, 6, 31, 116, 341,  842, 1827, ...
  1, 7, 43, 189, 645, 1827, 4495, ...
		

Programs

  • PARI
    trgn(nn) = {for (n= 0, nn, for (k = 0, n, print1(sum(j=0, n-k, binomial(k,j)*binomial(n-j,k)*((j+1) % 2)), ", ");); print(););} \\ Michel Marcus, Sep 11 2013

Formula

Row k (and column k) has g.f. (1+C(k,2)x^2)/(1-x)^(k+1).

A121832 Expansion of 1/(1-x-x^5-x^6).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 6, 8, 10, 13, 19, 29, 43, 61, 84, 116, 164, 236, 340, 485, 685, 965, 1365, 1941, 2766, 3936, 5586, 7916, 11222, 15929, 22631, 32153, 45655, 64793, 91944, 130504, 185288, 263096, 373544, 530281, 752729, 1068521, 1516905
Offset: 0

Views

Author

Jon E. Schoenfield, Aug 27 2006

Keywords

Comments

Number of compositions of n into parts 1, 5, and 6. [Joerg Arndt, Sep 03 2013]

Crossrefs

Cf. A008288.

Programs

  • Magma
    I:=[1,1,1,1,1,2]; [n le 6 select I[n] else Self(n-1)+Self(n-5)+Self(n-6): n in [1..50]]; // Vincenzo Librandi, Sep 03 2013
  • Mathematica
    CoefficientList[Series[1 / (1 - x - x^5 - x^6), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 03 2013 *)
    LinearRecurrence[{1,0,0,0,1,1},{1,1,1,1,1,2},50] (* Harvey P. Dale, Mar 30 2018 *)

Formula

a(n) = a(n-1) + a(n-5) + a(n-6).
a(n) = Sum_{k=0..floor(n/5)} A008288(n-4*k, k). - Johannes W. Meijer, Jul 19 2013

A152548 Sum of squared terms in rows of triangle A152547: a(n) = Sum_{k=0..C(n,[n/2])-1} A152547(n,k)^2.

Original entry on oeis.org

1, 4, 10, 24, 54, 120, 260, 560, 1190, 2520, 5292, 11088, 23100, 48048, 99528, 205920, 424710, 875160, 1798940, 3695120, 7574996, 15519504, 31744440, 64899744, 132503644, 270415600, 551231800, 1123264800, 2286646200, 4653525600
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2008

Keywords

Crossrefs

Programs

  • Maple
    seq(simplify((-2)^n*hypergeom([-n,3/2], [1], 2)),n=0..29); # Peter Luschny, Apr 26 2016
  • Mathematica
    CoefficientList[Series[Sqrt[(1+2x)/(1-2x)^3],{x,0,30}],x] (* Harvey P. Dale, Jan 04 2016 *)
  • PARI
    a(n)=sum(k=0,floor((n+1)/2),binomial(n+1, k)*(n+1-2*k)^3)/(n+1)

Formula

G.f.: A(x) = sqrt( (1+2x)/(1-2x)^3 ).
a(n) = Sum_{k=0..[(n+1)/2]} C(n+1, k)*(n+1-2k)^3/(n+1).
a(n) = A107233(n)/(n+1).
Self-convolution equals A014477.
E.g.f.: ((1 + 4*x)*BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). - Peter Luschny, Aug 26 2012
a(n) = (-2)^n*hypergeom([-n,3/2], [1], 2). - Peter Luschny, Apr 26 2016
D-finite with recurrence: (n+1)*a(n+1) = 4*a(n) + 4*n*a(n-1). - Vladimir Reshetnikov, Oct 10 2016
a(n) ~ 2^(n + 3/2) * sqrt(n/Pi). - Vaclav Kotesovec, Oct 11 2016
From Peter Bala, Mar 31 2024: (Start)
a(n) = (2^n) * Sum_{k = 0..n} (-1)^(n+k)*binomial(1/2, k)*binomial(-3/2, n-k).
a(n) = (2^n) * Sum_{k = 0..n} (2^k)*binomial(n, k)*binomial(1/2, k).
a(n) = (2^n)* Sum_{k = 0..n} binomial(n, k)*binomial(k+1/2, n). See A008288.
a(n) = (2*n + 1)!/(2^n * n!^2) * hypergeom([-n, -1/2], [-n-1/2], -1).
a(n) = 2^n * hypergeom([-n, -1/2], [1], 2).
a(n) = (-1/2)^n * binomial(2*n, n)/(1 - 2*n) * hypergeom([-n, 3/2], [-n+3/2], -1).(End)

A209695 Triangle of coefficients of polynomials u(n,x) jointly generated with A209696; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 1, 8, 18, 12, 1, 11, 40, 58, 29, 1, 14, 71, 164, 175, 70, 1, 17, 111, 357, 601, 507, 169, 1, 20, 160, 664, 1550, 2048, 1428, 408, 1, 23, 218, 1112, 3346, 6106, 6632, 3940, 985, 1, 26, 285, 1728, 6394, 15012, 22442, 20680, 10701, 2378
Offset: 1

Views

Author

Clark Kimberling, Mar 13 2012

Keywords

Comments

Alternating row sums: 1,-1,1,-1,1,-1,1,-1,...
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 24 2012

Examples

			First five rows:
  1;
  1,  2;
  1,  5,  5;
  1,  8, 18, 12;
  1, 11, 40, 58, 29;
First three polynomials u(n,x):
  1
  1 + 2x
  1 + 5x + 5x^2.
From _Philippe Deléham_, Mar 24 2012: (Start)
(1, 0, 1/2, -1/2, 0, 0, ...) DELTA (0, 2, 1/2, -1/2, 0, 0, ...) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  5,  5,  0;
  1,  8, 18, 12,  0;
  1, 11, 40, 58, 29, 0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209695 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209696 *)

Formula

u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 24 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-2*y*x-y*x^2-y^2*x^2)/(1-x-2*y*x-y*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End)

A211314 Square array of Delannoy numbers D(i,j) mod 7 (i >= 0, j >= 0) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 0, 6, 0, 1, 1, 2, 4, 4, 2, 1, 1, 4, 6, 0, 6, 4, 1, 1, 6, 5, 3, 3, 5, 6, 1, 1, 1, 1, 0, 6, 0, 1, 1, 1, 1, 3, 1, 6, 2, 2, 6, 1, 3, 1, 1, 5, 5, 1, 1, 3, 1, 1, 5, 5, 1, 1, 0, 6, 0, 1, 6, 6, 1, 0, 6, 0, 1, 1, 2, 4, 4, 2, 1, 1, 1, 2, 4, 4, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2012

Keywords

Examples

			Written as a triangle:
1,
1, 1,
1, 3, 1,
1, 5, 5, 1,
1, 0, 6, 0, 1,
1, 2, 4, 4, 2, 1,
1, 4, 6, 0, 6, 4, 1,
1, 6, 5, 3, 3, 5, 6, 1,
1, 1, 1, 0, 6, 0, 1, 1, 1,
...
		

Crossrefs

Previous Showing 91-100 of 141 results. Next