cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 58 results. Next

A078779 Union of S, 2S and 4S, where S = odd squarefree numbers (A056911).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 101
Offset: 1

Views

Author

Benoit Cloitre, Jan 11 2003

Keywords

Comments

Numbers n such that the cyclic group Z_n is a DCI-group.
Numbers n such that A008475(n) = A001414(n).
A193551(a(n)) = A000026(a(n)) = a(n). - Reinhard Zumkeller, Aug 27 2011
Union of squarefree numbers and twice the squarefree numbers (A005117). - Reinhard Zumkeller, Feb 11 2012
The complement is A046790. - Omar E. Pol, Jun 11 2016

Crossrefs

Programs

  • Haskell
    a078779 n = a078779_list !! (n-1)
    a078779_list = m a005117_list $ map (* 2) a005117_list where
       m xs'@(x:xs) ys'@(y:ys) | x < y     = x : m xs ys'
                               | x == y    = x : m xs ys
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Feb 11 2012, Aug 27 2011
    
  • PARI
    is(n)=issquarefree(n/gcd(n,2)) \\ Charles R Greathouse IV, Nov 05 2017

Formula

a(n) = (Pi^2/7)*n + O(sqrt(n)). - Vladimir Shevelev, Jun 08 2016

Extensions

Edited by N. J. A. Sloane, Sep 13 2006

A222416 If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 1 by convention).

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 10, 13, 23, 11, 25, 15, 27, 11, 29, 10, 31, 32, 14, 19, 12, 13, 37, 21, 16, 13, 41, 12, 43, 15, 14, 25, 47, 19, 49, 27, 20, 17, 53, 29, 16, 15, 22, 31, 59, 12, 61, 33, 16, 64, 18, 16, 67, 21, 26, 14, 71, 17, 73
Offset: 1

Views

Author

N. J. A. Sloane, Feb 28 2013

Keywords

Comments

A variant of A008475, which is the main entry.

Crossrefs

Programs

A051703 Maximal value of products of partitions of n into powers of distinct primes (1 not considered a power).

Original entry on oeis.org

1, 0, 2, 3, 4, 6, 0, 12, 15, 20, 30, 28, 60, 40, 84, 105, 140, 210, 180, 420, 280, 330, 360, 840, 504, 1260, 1155, 1540, 2310, 2520, 4620, 3080, 5460, 3960, 9240, 5544, 13860, 6552, 16380, 15015, 27720, 30030, 32760, 60060, 40040, 45045, 51480, 120120
Offset: 0

Views

Author

Keywords

Examples

			a(11) = 28 because max{11, 2*3^2, 2^3*3, 2^2*7} = 28.
		

Crossrefs

Largest element of n-th row of A080743.
A000793(n)=max{A000793(n-1), a(n)}, A000793(0)=1.

Programs

  • Maple
    b:= proc(n, i) option remember; local p;
          p:= `if`(i<1, 1, ithprime(i));
          `if`(n=0, 1, `if`(i<1 or n<0, 0, max(b(n, i-1),
          seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n))) ))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 16 2013
  • Mathematica
    nmax = 48; Do[a[n]=0, {n, 1, nmax}]; km = PrimePi[nmax]; For[k=1, k <= km, k++, q = 1; p = Prime[k]; For[i=nmax, i >= 1, i--, q=1; While[q*p <= i, q *= p; If[i == q, m = q, If[a[i - q] != 0, m = q*a[i - q], m = 0]]; a[i] = Max[a[i], m]]]]; a[0] = 1; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 02 2012, translated from Robert Gerbicz's Pari program *)
  • PARI
    {N=1000;v=vector(N,i,0);forprime(p=2,N,q=1;forstep(i=N,1,-1,
    q=1;while(q*p<=i,q*=p;if(i==q,M=q,if(v[i-q],M=q*v[i-q],M=0));
    v[i]=max(v[i],M))));print(0" "1);for(i=1,N,print(i" "v[i]))} \\ Robert Gerbicz, Jul 31 2012

Extensions

Corrected and extended by Robert Gerbicz, Jul 31 2012

A082090 Length of iteration sequence if function A056239, a pseudo-logarithm is iterated and started at n. Fixed point equals zero for all initial values.

Original entry on oeis.org

2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 7, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 6, 7, 7, 6, 6, 6, 6, 7, 6, 6, 7, 7, 6, 6, 7, 6, 6, 7, 6, 6, 7, 7, 6, 7, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 7
Offset: 1

Views

Author

Labos Elemer, Apr 09 2003

Keywords

Comments

From Gus Wiseman, Dec 01 2023: (Start)
Conjecture:
- The position of first appearance of k is n = A007097(k-2).
- The position of last appearance of k is n = A014221(k-2) = 2^^(k-2).
- The number of times k appears is: 1, 1, 2, 8, 435, ...
(End)

Examples

			n=127:list={127,31,11,5,3,2,1,0},a[127]=8
		

References

  • Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
  • Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60. Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.

Crossrefs

A112798 lists prime indices, length A001222, sum A056239.
A304038 lists distinct prime indices, length A001221, sum A066328.

Programs

  • Maple
    f:= n-> add (numtheory[pi](i[1])*i[2], i=ifactors(n)[2]):
    a:= n-> 1+ `if`(n=1, 1, a(f(n))):
    seq (a(n), n=1..120);  # Alois P. Heinz, Aug 09 2012
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] bpi[x_] := Table[PrimePi[Part[ba[x], j]], {j, 1, lf[x]}] api[x_] := Apply[Plus, ep[x]*bpi[x]] Table[Length[FixedPointList[api, w]]-1, {w, 2, 128}]
    Table[Length[FixedPointList[Total[PrimePi/@Join@@ ConstantArray@@@FactorInteger[#]]&,n]]-1, {n,100}] (* Gus Wiseman, Dec 01 2023 *)

A159685 Maximal product of distinct primes whose sum is <= n.

Original entry on oeis.org

1, 2, 3, 3, 6, 6, 10, 15, 15, 30, 30, 42, 42, 70, 105, 105, 210, 210, 210, 210, 330, 330, 462, 462, 770, 1155, 1155, 2310, 2310, 2730, 2730, 2730, 2730, 4290, 4290, 6006, 6006, 10010, 15015, 15015, 30030, 30030, 30030, 30030, 39270, 39270, 46410, 46410
Offset: 1

Views

Author

Wouter Meeussen, Apr 19 2009, May 02 2009

Keywords

Comments

Equivalently, largest value of the LCM of the partitions of n into primes.
Equivalently, maximal number of times a permutation of length n, with prime cycle lengths, can operate on itself before returning to the initial permutation.
If the requirement that primes are distinct is dropped, this becomes A000792. - Charles R Greathouse IV, Jul 10 2012

Examples

			A permutation of length 10 can have prime cycle lengths of 2+3+5; so when repeatedly applied to itself, can produce at most 2*3*5 different permutations.
The products of distinct primes whose sum is <= 10 are 1 (the empty product), 2, 3, 5, 7, 2*3=6, 2*5=10, 2*7=14, 3*5=15, 3*7=21, and 2*3*5=30. The maximum is 30, so a(10) = 30. - _Jonathan Sondow_, Jul 06 2012
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n,i) option remember; local p; p:= ithprime(max(i,1));
          `if`(n=0, 1, `if`(i<1, 0,
           max(b(n, i-1), `if`(p>n, 0, b(n-p, i-1)*p))))
        end:
    a:= proc(n) option remember;
         `if`(n=0, 1, max(b(n, pi(n)), a(n-1)))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 04 2012
  • Mathematica
    temp=Series[Times @@ (1/(1-q[ # ] x^#)& /@ Prepend[Prime /@ Range[24],1]),{x,0,Prime[24]}]; Table[Max[List @@ Expand[Coefficient[temp,x^n]]/. q[a_]^_ ->q[a] /.q->Identity],{n,64}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = Module[{p = Prime[Max[i, 1]]}, If[n == 0, 1, If[i < 1, 0, Max[b[n, i-1], If[p > n, 0, b[n-p, i-1]*p]]]]]; a[n_] := a[n] = If[n == 0, 1, Max[b[n, PrimePi[n]], a[n-1]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 05 2013, translated from Alois P. Heinz's Maple program *)

Formula

a(n) <= A002809(n) and A008475(a(n)) <= n (see (1.2) and (1.4) in Deléglise-Nicolas 2012). - Jonathan Sondow, Jul 04 2012.

A182938 If n = Product (p_j^e_j) then a(n) = Product (binomial(p_j, e_j)).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 0, 3, 10, 11, 3, 13, 14, 15, 0, 17, 6, 19, 5, 21, 22, 23, 0, 10, 26, 1, 7, 29, 30, 31, 0, 33, 34, 35, 3, 37, 38, 39, 0, 41, 42, 43, 11, 15, 46, 47, 0, 21, 20, 51, 13, 53, 2, 55, 0, 57, 58, 59, 15, 61, 62, 21, 0, 65, 66
Offset: 1

Views

Author

Peter Luschny, Jan 16 2011

Keywords

Crossrefs

Programs

  • Haskell
    a182938 n = product $ zipWith a007318'
       (a027748_row n) (map toInteger $ a124010_row n)
    -- Reinhard Zumkeller, Feb 18 2012
  • Maple
    A182938 := proc(n) local e,j; e := ifactors(n)[2]:
    mul (binomial(e[j][1], e[j][2]), j=1..nops(e)) end:
    seq (A182938(n), n=1..100);
  • Mathematica
    a[n_] := Times @@ (Map[Binomial @@ # &, FactorInteger[n], 1]);
    Table[a[n], {n, 1, 100}] (* Kellen Myers, Jan 16 2011 *)
  • PARI
    a(n)=prod(i=1,#n=factor(n)~,binomial(n[1,i],n[2,i])) \\ M. F. Hasler
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X)^p)[n], ", ")) \\ Vaclav Kotesovec, Mar 28 2025
    

Formula

a(A185359(n)) = 0. - Reinhard Zumkeller, Feb 18 2012
Dirichlet g.f.: Product_{p prime} (1 + p^(-s))^p. - Ilya Gutkovskiy, Oct 26 2019
Conjecture: Sum_{k=1..n} a(k) ~ c * n^2, where c = 0.33754... - Vaclav Kotesovec, Mar 28 2025

Extensions

Given terms checked with new PARI code by M. F. Hasler, Jan 16 2011

A080743 Array read by rows in which n-th row lists orders of elements of Symm(n) that are not orders of elements of Symm(n-1) (6th row is empty, written as 0 by convention).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 0, 7, 10, 12, 8, 15, 9, 14, 20, 21, 30, 11, 18, 24, 28, 35, 42, 60, 13, 22, 36, 40, 33, 45, 70, 84, 26, 44, 56, 105, 16, 39, 55, 63, 66, 90, 120, 140, 17, 52, 72, 210, 65, 77, 78, 110, 126, 132, 168, 180, 19, 34, 48, 88, 165, 420, 51, 91, 99, 130, 154, 156, 220
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2003

Keywords

Comments

A051613 gives number of elements in n-th row.

Examples

			1;
2;
3;
4;
5, 6;
0;
7, 10, 12;
8, 15;
...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, {n},
          {n, seq(map(x-> ilcm(x, i), b(n-i))[], i=2..n-1)}
           minus {seq(b(i)[], i=1..n-1)})
        end:
    T:= proc(n) local l; l:= [b(n, n)[]];
          `if`(nops(l)=0, 0, sort(l)[])
        end:
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 15 2013
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0, 1, If[i<1 || n<0, 0, Max[Join[{b[n, i-1]}, Table[p^j*b[n-p^j, i-1], {j, 1, Log[p, n]}]]]]] ]; T[1] = {1}; T[6] = {0}; T[n_] := Reap[For[m = n, m <= b[n, PrimePi[n]], m++,  If[n == Total[Power @@@ FactorInteger[m]], Sow[m]]]][[2, 1]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

n-th row = set of m such that A008475(m) = n, or 0 if no such m exists.

Extensions

More terms from Vladeta Jovovic, Mar 12 2003

A304037 If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^k_j), where pi() = A000720.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 4, 4, 5, 3, 6, 5, 5, 1, 7, 5, 8, 4, 6, 6, 9, 3, 9, 7, 8, 5, 10, 6, 11, 1, 7, 8, 7, 5, 12, 9, 8, 4, 13, 7, 14, 6, 7, 10, 15, 3, 16, 10, 9, 7, 16, 9, 8, 5, 10, 11, 17, 6, 18, 12, 8, 1, 9, 8, 19, 8, 11, 8, 20, 5, 21, 13, 11, 9, 9, 9, 22, 4, 16, 14, 23, 7, 10, 15, 12, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, May 05 2018

Keywords

Examples

			a(72) = 5 because 72 = 2^3*3^2 = prime(1)^3*prime(2)^2 and 1^3 + 2^2 = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ (PrimePi[#[[1]]]^#[[2]]& /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 1, 88}]

Formula

If gcd(u,v) = 1 then a(u*v) = a(u) + a(v).
a(p^k) = A000720(p)^k where p is a prime.
a(A002110(m)^k) = 1^k + 2^k + ... + m^k.
As an example:
a(A000040(k)) = k.
a(A006450(k)) = A000040(k).
a(A038580(k)) = A006450(k).
a(A001248(k)) = a(A011757(k)) = A000290(k).
a(A030078(k)) = a(A055875(k)) = A000578(k).
a(A002110(k)) = a(A011756(k)) = A000217(k).
a(A061742(k)) = A000330(k).
a(A115964(k)) = A000537(k).
a(A080696(k)) = A007504(k).
a(A076954(k)) = A001923(k).

A304251 If n = Product (p_j^k_j) then a(n) = Sum (prime(p_j)^k_j).

Original entry on oeis.org

0, 3, 5, 9, 11, 8, 17, 27, 25, 14, 31, 14, 41, 20, 16, 81, 59, 28, 67, 20, 22, 34, 83, 32, 121, 44, 125, 26, 109, 19, 127, 243, 36, 62, 28, 34, 157, 70, 46, 38, 179, 25, 191, 40, 36, 86, 211, 86, 289, 124, 64, 50, 241, 128, 42, 44, 72, 112, 277, 25, 283, 130, 42, 729, 52, 39, 331, 68, 88, 31
Offset: 1

Views

Author

Ilya Gutkovskiy, May 09 2018

Keywords

Examples

			a(12) = 14 because 12 = 2^2*3 and prime(2)^2 + prime(3) = 3^2 + 5 = 14.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
       add(ithprime(t[1])^t[2],t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 25 2024
  • Mathematica
    a[n_] := Plus @@ (Prime[#[[1]]]^#[[2]] & /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 70}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, prime(f[k,1])^f[k,2]); \\ Michel Marcus, May 09 2018

Formula

a(prime(i)^k) = prime(prime(i))^k.
a(A000040(k)) = A006450(k).
a(A006450(k)) = A038580(k).
a(A002110(k)) = A083186(k).

A340901 Additive with a(p^e) = (-p)^e.

Original entry on oeis.org

0, -2, -3, 4, -5, -5, -7, -8, 9, -7, -11, 1, -13, -9, -8, 16, -17, 7, -19, -1, -10, -13, -23, -11, 25, -15, -27, -3, -29, -10, -31, -32, -14, -19, -12, 13, -37, -21, -16, -13, -41, -12, -43, -7, 4, -25, -47, 13, 49, 23, -20, -9, -53, -29, -16, -15, -22, -31
Offset: 1

Views

Author

Sebastian Karlsson, Jan 26 2021

Keywords

Comments

The sequence contains every integer infinitely many times.
Proof (outline):
1. Every integer m > 9 is the sum of distinct odd primes [R. E. Dressler].
2. Any integer k (positive as negative) can be written as k = 4^e - m, for sufficiently large and infinitely many e > 0 and m > 9.
3. Pick an arbitrary integer k and write it like k = 4^e - m. Let p_1, p_2, ..., p_i be distinct odd primes such that p_1 + p_2 + ... + p_i = m. Then a(p_1*p_2*...*p_i*4^e) = 4^e - m = k. Since there are infinitely many representations of any k of the form 4^e - m, this means that there are infinitely many n such that a(n) = k.
Q.E.D.

Examples

			a(20) = a(2^2*5) = (-2)^2 + (-5) = -1.
		

Crossrefs

Programs

  • APL
    ⍝ Dyalog dialect
    A340901 ← {1=⍵:0 ⋄ +/{(-⍺)*≢⍵}⌸factors(⍵)} ⍝ Needs also factors function from https://dfns.dyalog.com/c_factors.htm - Antti Karttunen, Feb 16 2024
  • Mathematica
    a[n_] := Total@ (((-First[#])^Last[#]) & /@ FactorInteger[n]); a[1] = 0; Array[a, 100] (* Amiram Eldar, May 15 2023 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, (-f[k,1])^f[k,2]); \\ Michel Marcus, Jan 26 2021
    
  • Python
    from sympy import primefactors as pf, multiplicity as mult
    def a(n):
        return sum([(-p)**mult(p, n) for p in pf(n)])
    for n in range(1, 59):
        print(a(n), end=', ')
    

Formula

a(A002035(n)) = - A008475(A002035(n)).
a(n^2) = A008475(n^2).
Previous Showing 31-40 of 58 results. Next