cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 79 results. Next

A145568 Characteristic function of numbers relatively prime to 11.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang Feb 05 2009

Keywords

Comments

The x-powers appearing in the numerator polynomial of the o.g.f., given below, give the numbers from 0,1,...,10 which survive the sieve of Eratosthenes for multiples of 11, namely 1,2,...10.
Contribution from Reinhard Zumkeller, Nov 30 2009: (Start)
a(n)=A000007(A010880(n)); a(A160542(n))=1; a(A008593(n))=0;
A033443(n) = SUM(a(k)*(n-k): 0<=k<=n). (End)

Crossrefs

A000035, A011655, A011558, A109720 for coprimality with 2,3,5,7, respectively.

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},105] (* Ray Chandler, Aug 26 2015 *)
  • PARI
    a(n)=gcd(n,11)==1 \\ Charles R Greathouse IV, Jun 28 2015

Formula

a(n)=1 if gcd(n,11)=1, else 0. Periodic with period 11: a(n+11)=a(11).
O.g.f.: x*sum(x^k,k=0..9)/(1-x^11).
Completely multiplicative with a(p) = (if p=11 then 0 else 1), p prime. [From Reinhard Zumkeller, Nov 30 2009]
Dirichlet g.f. (1-11^(-s))*zeta(s). - R. J. Mathar, Mar 06 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013

A216995 Multiples of 11 whose digit sum is a multiple of 11.

Original entry on oeis.org

209, 308, 407, 506, 605, 704, 803, 902, 2090, 2299, 2398, 2497, 2596, 2695, 2794, 2893, 2992, 3080, 3289, 3388, 3487, 3586, 3685, 3784, 3883, 3982, 4070, 4279, 4378, 4477, 4576, 4675, 4774, 4873, 4972, 5060, 5269, 5368, 5467, 5566, 5665, 5764, 5863, 5962, 6050
Offset: 1

Views

Author

Jon Perry, Sep 22 2012

Keywords

Comments

Nothing between 1000 and 2000.
Also, there are no a(n) from 10902 to 12198 (this interval contains 117 multiples of 11). [Bruno Berselli, Oct 26 2012]

Examples

			3487 = 11*317 and 3+4+8+7 = 22 = 11*2.
		

Crossrefs

Cf. A008593 (multiples of 11), A166311 (digit sum multiple of 11).

Programs

  • JavaScript
    function sumarray(arr) {
    t=0;
    for (i=0;i
    				
  • Mathematica
    Select[11*Range[1000], Mod[Total[IntegerDigits[#]], 11] == 0 &] (* T. D. Noe, Sep 24 2012 *)
  • Python
    def sd(n): return sum(map(int, str(n)))
    def ok(n): return n%11 == 0 and sd(n)%11 == 0
    print(list(filter(ok, range(1, 6051)))) # Michael S. Branicky, Jul 11 2021

A033584 a(n) = 11*n^2.

Original entry on oeis.org

0, 11, 44, 99, 176, 275, 396, 539, 704, 891, 1100, 1331, 1584, 1859, 2156, 2475, 2816, 3179, 3564, 3971, 4400, 4851, 5324, 5819, 6336, 6875, 7436, 8019, 8624, 9251, 9900, 10571, 11264, 11979, 12716
Offset: 0

Views

Author

Keywords

Comments

From Roberto E. Martinez II, Jan 07 2002: (Start)
Number of edges of the complete tripartite graph of order 7n, K_n,n,5n.
Number of edges of the complete tripartite graph of order 6n, K_n,2n,3n. (End)
11 times the squares. - Omar E. Pol, Dec 13 2008

Examples

			a(1)=22*1+0-11=11; a(2)=22*2+11-11=44; a(3)=22*3+44-11=99 - _Vincenzo Librandi_, Aug 05 2010
		

Crossrefs

Programs

Formula

a(n) = 11*A000290(n). - Omar E. Pol, Dec 13 2008
a(n) = 22*n + a(n-1) - 11 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/66.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/132.
Product_{n>=1} (1 + 1/a(n)) = sqrt(11)*sinh(Pi/sqrt(11))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(11)*sin(Pi/sqrt(11))/Pi. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 11*x*(1 + x)/(1-x)^3.
E.g.f.: 11*x*(1 + x)*exp(x).
a(n) = n*A008593(n) = A195043(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A094053 Triangle read by rows: T(n,k) = k*(n-k), 1 <= k <= n.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 3, 4, 3, 0, 4, 6, 6, 4, 0, 5, 8, 9, 8, 5, 0, 6, 10, 12, 12, 10, 6, 0, 7, 12, 15, 16, 15, 12, 7, 0, 8, 14, 18, 20, 20, 18, 14, 8, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0, 12
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2004

Keywords

Comments

T(n,k) = A003991(n-1,k) for 1 <= k < n;
T(n,k) = T(n,n-1-k) for k < n;
T(n,1) = n-1; T(n,n) = 0; T(n,2) = A005843(n-2) for n > 1;
T(n,3) = A008585(n-3) for n>2; T(n,4) = A008586(n-4) for n > 3;
T(n,5) = A008587(n-5) for n>4; T(n,6) = A008588(n-6) for n > 5;
T(n,7) = A008589(n-7) for n>6; T(n,8) = A008590(n-8) for n > 7;
T(n,9) = A008591(n-9) for n>8; T(n,10) = A008592(n-10) for n > 9;
T(n,11) = A008593(n-11) for n>10; T(n,12) = A008594(n-12) for n > 11;
T(n,13) = A008595(n-13) for n>12; T(n,14) = A008596(n-14) for n > 13;
T(n,15) = A008597(n-15) for n>14; T(n,16) = A008598(n-16) for n > 15;
T(n,17) = A008599(n-17) for n>16; T(n,18) = A008600(n-18) for n > 17;
T(n,19) = A008601(n-19) for n>18; T(n,20) = A008602(n-20) for n > 19;
Row sums give A000292; triangle sums give A000332;
All numbers m > 0 occur A000005(m) times;
A002378(n) = T(A005408(n),n+1) = n*(n+1).
k-th columns are arithmetic progressions with step k, starting with 0. If a zero is prefixed to the sequence, then we get a new table where the columns are again arithmetic progressions with step k, but starting with k, k=0,1,2,...: 1st column = (0,0,0,...), 2nd column = (1,2,3,...), 3rd column = (2,4,6,8,...), etc. - M. F. Hasler, Feb 02 2013
Construct the infinite-dimensional matrix representation of angular momentum operators (J_1,J_2,J_3) in the Jordan-Schwinger form (cf. Harter, Klee, Schwinger). The triangle terms T(n,k) = T(2j,j+m) satisfy: (1/2)T(2j,j+m)^(1/2) = = = i = -i . Matrices for J_1 and J_2 are sparse. These equalities determine the only nonzero entries. - Bradley Klee, Jan 29 2016
T(n+1,k+1) is the number of degrees of freedom of a k-dimensional affine subspace within an n-dimensional vector space. This is most readily interpreted geometrically: e.g. in 3 dimensions a line (1-dimensional subspace) has T(4,2) = 4 degrees of freedom and a plane has T(4,3) = 3. T(n+1,1) = n indicates that points in n dimensions have n degrees of freedom. T(n,n) = 0 for any n as all n-dimensional spaces in an n-dimensional space are equivalent. - Daniel Leary, Apr 29 2020

Examples

			From _M. F. Hasler_, Feb 02 2013: (Start)
Triangle begins:
  0;
  1, 0;
  2, 2, 0;
  3, 4, 3, 0;
  4, 6, 6, 4, 0;
  5, 8, 9, 8, 5, 0;
  (...)
If an additional 0 was added at the beginning, this would become:
  0;
  0, 1;
  0, 2, 2;
  0, 3, 4; 3;
  0, 4, 6, 6, 4;
  0, 5, 8, 9, 8, 5;
  ... (End)
		

Crossrefs

J_3: A114327; J_1^2, J_2^2: A141387, A268759.
Cf. A000292 (row sums), A000332 (triangle sums).
T(n,k) for values of k:
A005843 (k=2), A008585 (k=3), A008586 (k=4), A008587 (k=5), A008588 (k=6), A008589 (k=7), A008590 (k=8), A008591 (k=9), A008592 (k=10), A008593 (k=11), A008594 (k=12), A008595 (k=13), A008596 (k=14), A008597 (k=15), A008598 (k=16), A008599 (k=17), A008600 (k=18), A008601 (k=19), A008602 (k=20).

Programs

  • Magma
    /* As triangle */ [[k*(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 30 2016
    
  • Mathematica
    Flatten[Table[(j - m) (j + m + 1), {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
  • PARI
    {for(n=1, 13, for(k=1, n, print1(k*(n - k)," ");); print(););} \\ Indranil Ghosh, Mar 12 2017

A135499 Numbers for which Sum_digits(odd positions) = Sum_digits(even positions).

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 220, 231, 242, 253, 264, 275, 286, 297, 330, 341, 352, 363, 374, 385, 396, 440, 451, 462, 473, 484, 495, 550, 561, 572, 583, 594, 660, 671, 682, 693, 770, 781, 792, 880, 891, 990
Offset: 1

Views

Author

Keywords

Comments

Conjecture: this is a subsequence of A008593 (verified for the first 50 thousand terms). - R. J. Mathar, Feb 10 2008
Subsequence of A008593. - Zak Seidov Feb 11 2008
If k is present, so is 10*k. - Robert G. Wilson v, Jul 13 2014
As Seidov said, a subsequence of multiples of 11. That follows trivially from the divisibility rule for 11. - Jens Kruse Andersen, Jul 13 2014
A225693(a(n)) = 0. - Reinhard Zumkeller, Aug 08 2014

Examples

			594, 1023, and 1397 are terms:
   594 -> 4 + 5 = 9;
  1023 -> 3 + 0 = 2 + 1;
  1397 -> 7 + 3 = 9 + 1.
		

Crossrefs

Cf. A060979.
Cf. A225693.

Programs

  • Haskell
    a135499 n = a135499_list !! (n-1)
    a135499_list = filter ((== 0) . a225693) [1..]
    -- Reinhard Zumkeller, Aug 08 2014, Jul 05 2014
  • Maple
    P:=proc(n) local i,k,w,x; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=0; k:=i; while k>0 do x:=x+(k-(trunc(k/10)*10)); k:=trunc(k/100); od; if w=2*x then print(i); fi; od; end: P(3000);
    # Alternative:
    filter:= proc(n)
    local L,d;
    L:= convert(n,base,10);
    d:= nops(L);
    add(L[2*i],i=1..floor(d/2)) = add(L[2*i-1],i=1..floor((d+1)/2))
    end proc:
    select(filter,[ 11*j $ j= 1 .. 10^4 ]); # Robert Israel, May 28 2014
  • Mathematica
    dQ[n_]:=Module[{p=Transpose[Partition[IntegerDigits[n],2,2,1,0]]},Total[First[p]]== Total[Last[p]]]; Select[Range[1000],dQ] (* Harvey P. Dale, May 26 2011 *)

A017413 a(n) = 11*n + 2.

Original entry on oeis.org

2, 13, 24, 35, 46, 57, 68, 79, 90, 101, 112, 123, 134, 145, 156, 167, 178, 189, 200, 211, 222, 233, 244, 255, 266, 277, 288, 299, 310, 321, 332, 343, 354, 365, 376, 387, 398, 409, 420, 431, 442, 453, 464, 475, 486, 497, 508, 519, 530, 541, 552, 563, 574, 585
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 11 2018: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (2 + 9*x)/(1 - x)^2.
E.g.f.: (2 + 11*x)*exp(x). (End)

A123867 a(n) = n^10 - 1.

Original entry on oeis.org

0, 1023, 59048, 1048575, 9765624, 60466175, 282475248, 1073741823, 3486784400, 9999999999, 25937424600, 61917364223, 137858491848, 289254654975, 576650390624, 1099511627775, 2015993900448, 3570467226623, 6131066257800, 10239999999999, 16679880978200
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2006

Keywords

Comments

a(n) mod 11 = 0 iff n mod 11 > 0; a(A008593(n)) = 10.

Crossrefs

Programs

Formula

From G. C. Greubel, Aug 08 2019: (Start)
G.f.: x^2*(1023 + 47795*x + 455312*x^2 + 1310144*x^3 + 1310606*x^4 + 454982*x^5 + 47960*x^6 + 968*x^7 + 11*x^8 + x^9)/(1-x)^11.
E.g.f.: 1 +(-1 + x + 511*x^2 + 9330*x^3 + 34105*x^4 + 42525*x^5 + 22827*x^6 + 5880*x^7 + 750*x^8 + 45*x^9 + x^10)*exp(x). (End)

A225361 Partition numbers of the form 11k.

Original entry on oeis.org

11, 22, 77, 176, 231, 297, 385, 627, 792, 1958, 3718, 4565, 6842, 8349, 14883, 21637, 26015, 31185, 44583, 53174, 63261, 173525, 204226, 239943, 281589, 386155, 526823, 715220, 831820, 1121505, 1300156, 1741630, 5392783, 7089500, 8118264, 12132164, 18004327
Offset: 1

Views

Author

Omar E. Pol, May 05 2013

Keywords

Comments

Intersection of A008593 and A000041.

Examples

			22 is in the sequence because 11*2 = 22 and 22 is a partition number: p(8) = A000041(8) = 22.
		

Crossrefs

Programs

  • Mathematica
    Select[PartitionsP[Range[300]], Mod[#, 11] == 0 &]

Formula

a(n) = 11*A225323(n).

A017425 a(n) = 11*n + 3.

Original entry on oeis.org

3, 14, 25, 36, 47, 58, 69, 80, 91, 102, 113, 124, 135, 146, 157, 168, 179, 190, 201, 212, 223, 234, 245, 256, 267, 278, 289, 300, 311, 322, 333, 344, 355, 366, 377, 388, 399, 410, 421, 432, 443, 454, 465, 476, 487, 498, 509, 520, 531, 542, 553, 564, 575, 586
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Apr 03 2024: (Start)
G.f.: (3+8*x)/(1-x)^2.
E.g.f.: exp(x)*(3 + 11*x).
a(n) = A226492(n+1) - A226492(n).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

Extensions

Terms corrected by Vincenzo Librandi, Sep 02 2011

A317311 Multiples of 11 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 11, 3, 22, 5, 33, 7, 44, 9, 55, 11, 66, 13, 77, 15, 88, 17, 99, 19, 110, 21, 121, 23, 132, 25, 143, 27, 154, 29, 165, 31, 176, 33, 187, 35, 198, 37, 209, 39, 220, 41, 231, 43, 242, 45, 253, 47, 264, 49, 275, 51, 286, 53, 297, 55, 308, 57, 319, 59, 330, 61, 341, 63, 352, 65, 363, 67, 374, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 15-gonal numbers (A277082).
a(n) is also the length of the n-th line segment of the rectangular spiral wh0se vertices are the generalized 15-gonal numbers.

Crossrefs

Cf. A008593 and A005408 interleaved.
Column 11 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A277082.

Programs

  • Mathematica
    {0}~Join~Riffle[2 Range@ # - 1, 11 Range@ #] &@ 35 (* or *)
    CoefficientList[Series[x (1 + 11 x + x^2)/((1 - x)^2*(1 + x)^2), {x, 0, 69}], x] (* Michael De Vlieger, Jul 26 2018 *)
    LinearRecurrence[{0,2,0,-1},{0,1,11,3},90] (* Harvey P. Dale, Aug 28 2022 *)
  • PARI
    concat(0, Vec(x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 26 2018

Formula

a(2n) = 11*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 26 2018: (Start)
G.f.: x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 11*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 9/2^s). - Amiram Eldar, Oct 25 2023
a(n) = (13 + 9*(-1)^n)*n/4. - Aaron J Grech, Aug 20 2024
Previous Showing 21-30 of 79 results. Next