cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 112 results. Next

A380162 a(n) is the value of the Euler totient function when applied to the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 1, 2, 1, 1, 1, 8, 1, 6, 1, 2, 1, 1, 1, 2, 20, 1, 6, 2, 1, 1, 1, 8, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 1, 8, 42, 20, 1, 2, 1, 6, 1, 2, 1, 1, 1, 2, 1, 1, 6, 32, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 20, 2, 1, 1, 1, 8, 54, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, (p-1)*p^(2*Floor[e/2]-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, (f[i, 1]-1) * f[i, 1]^(2*(f[i, 2]\2)-1)));}

Formula

a(n) = A000010(A008833(n)).
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A000010(n), with equality if and only if n is either a square (A000290) or twice an odd square (A077591 \ {1}).
Multiplicative with a(p) = 1, and a(p^e) = (p-1)*p^(2*floor(e/2)-1) if e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) / (zeta(2*s-1) * zeta(2*s)).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = zeta(3/2)/(zeta(2)*zeta(3)) = 1.32118019580177760682... .

A056628 a(n) = A056623(n!).

Original entry on oeis.org

1, 1, 1, 1, 1, 144, 144, 144, 1296, 518400, 518400, 230400, 230400, 2822400, 9144576, 146313216, 146313216, 21069103104, 21069103104, 52672757760000, 119439360000, 3613040640000, 3613040640000, 18730002677760000, 468250066944000000, 19783565328384000000, 19783565328384000000
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Previous name "Largest unitary square divisor of n!" was incorrect. See A374988 for the correct sequence with this name. - Amiram Eldar, Jul 26 2024

Examples

			a(12) = A056623(12!) = A008833(12!)/A055229(12!)^2 = 2073600/3^2 = 230400.
		

Crossrefs

Programs

Formula

a(n) = A055071(n)/A055230(n)^2 = A008833(n!)/A055229(n!)^2.
a(n) = A056623(n!). - Michel Marcus, Aug 16 2020
a(n) = A056627(n)^2. - Amiram Eldar, Jul 08 2024

Extensions

More terms from Michel Marcus, Aug 16 2020
Incorrect name replaced with a formula by Amiram Eldar, Jul 26 2024

A059479 Number of 3 X 3 matrices with elements from {0,...,n-1} such that the middle element of each of the eight lines of three (rows, columns and diagonals) is the square (mod n) of the difference of the end elements.

Original entry on oeis.org

1, 4, 9, 64, 25, 36, 49, 256, 729, 100, 121, 576, 169, 196, 225, 4096, 289, 2916, 361, 1600, 441, 484, 529, 2304, 15625, 676, 6561, 3136, 841, 900, 961, 16384, 1089, 1156, 1225, 46656, 1369, 1444, 1521, 6400, 1681, 1764, 1849, 7744, 18225, 2116, 2209
Offset: 1

Views

Author

John W. Layman, Feb 15 2001

Keywords

Comments

This sequence is multiplicative. - Mitch Harris, Apr 19 2005
The sequence enumerates the solutions of a system of polynomials equations modulo n, hence is multiplicative by the Chinese Remainder Theorem. The middle entry of the 3 X 3 is zero modulo n. - Michael Somos, Apr 30 2005

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(3*e - (Mod[e, 2])); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n)=if(n<1,0,n^3/core(n)) /* Michael Somos, Apr 30 2005 */

Formula

a(n) = A008833(n)*n^2, where A008833(n) is the largest square that divides n.
Multiplicative with a(p^e) = p^(3e - (e % 2)). - Mitch Harris, Jun 09 2005
Dirichlet g.f.: zeta(s-2)*zeta(2s-6)/zeta(2s-4). - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ zeta(3/2) * n^(7/2) / (7*zeta(3)). - Vaclav Kotesovec, Sep 16 2020
Sum_{n>=1} 1/a(n) = 15*zeta(6)/Pi^2 = A082020 * A013664 = 1.546176... . - Amiram Eldar, Nov 03 2022

A069189 Numbers k such that A007913(k) < sqrt(k).

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 25, 27, 32, 36, 45, 48, 49, 50, 54, 63, 64, 72, 75, 80, 81, 96, 98, 100, 108, 112, 121, 125, 128, 144, 147, 150, 160, 162, 169, 175, 176, 180, 192, 196, 200, 208, 216, 224, 225, 240, 242, 243, 245, 250, 252, 256, 275, 288, 289, 294, 300, 320
Offset: 1

Views

Author

Benoit Cloitre, Apr 10 2002

Keywords

Comments

Equivalently, numbers k whose squarefree part, A007913(k), is smaller than their square part, A008833(k). - Peter Munn, Mar 26 2021

Crossrefs

Subsequence of A048098.
A116882 is a near equivalent with respect to a number's odd part.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p, 1]; sqf[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[320], sqf[#] < Sqrt[#] &] (* Amiram Eldar, Apr 02 2020 *)
  • PARI
    for(n=1,200,if(core(n)
    				

A100777 Square-factorial numbers: a(1) = 1, a(n+1) = a(n) * largest square divisor of (n+1).

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 16, 144, 144, 144, 576, 576, 576, 576, 9216, 9216, 82944, 82944, 331776, 331776, 331776, 331776, 1327104, 33177600, 33177600, 298598400, 1194393600, 1194393600, 1194393600, 1194393600, 19110297600, 19110297600, 19110297600, 19110297600
Offset: 1

Views

Author

Amarnath Murthy, Nov 28 2004

Keywords

Comments

Complementary to A048803 which can be defined as squarefree factorials.
Partial products of A008833. - Ray Chandler, Nov 29 2004

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*Floor[e/2]); s[n_] := Times @@ (f @@@ FactorInteger[n]); FoldList[Times, 1, Array[s, 31, 2]] (* Amiram Eldar, Dec 07 2020 *)

Extensions

More terms from Amiram Eldar, Dec 07 2020

A180323 Positive numbers l of the form l = A007913(k^4 - 4*k*m^3), where 1 <= k <= 5*l, 1 <= |m| <= 5*l.

Original entry on oeis.org

2, 5, 6, 11, 15, 17, 29, 33, 41, 42, 43, 51, 53, 58, 62, 65, 69, 82, 85, 86, 89, 93
Offset: 1

Views

Author

Vladimir Shevelev, Aug 28 2010

Keywords

Comments

The equation x^3 + y^3 + z^3 = 0 is solvable in numbers of the form N + M*sqrt(a(n)), where M and N are integers. Moreover, it is solvable in numbers of the form N + M*sqrt(l), where l has the form l = A007913(k^4 - 4*k*m^3), where k,|m| >= 1 (without restrictions k,|m| <= 5*l). But in this more general case there could be unknown numbers l having this form; this circumstance does not allow construction of the full sequence of such l. Therefore we restrict ourselves by the condition k,|m| <= 5*l. Note that testing l with respect to this condition is rather simple by sorting all values of k,|m| <= l. One can prove that, at least, if the Fermat numbers (A000215) are squarefree, then the sequence is infinite. Conjecture (necessity of the form of l): If the equation x^3 + y^3 + z^3 = 0 is solvable in numbers of the form N + M*sqrt(l) with integer N,M, then there exist positive integers k,m such that l = A007913(k^4 - 4*k*m^3).

Crossrefs

Formula

Let a(n) = A007913(k^4-4*k*m^3). Put g=sqrt(A008833(k^4-4*k*m^3)). Then identity A^3+B^3+C^3=0 is valid, where A=2*m^6-k^3*m^3-k^6+k*(k^3+5*m^3)*g*sqrt(a(n)); B=3*m*(k^3-m^3)*(k^2-g*sqrt(a(n))); C=k^6-8*k^3*m^3-2*m^6-k*(k^3-4*m^3)*g*sqrt(a(n)).

A186970 The oex analog of the Euler phi-function for the oex prime power factorization of positive integers.

Original entry on oeis.org

1, 1, 2, 3, 4, 3, 6, 4, 8, 5, 10, 7, 12, 8, 9, 12, 16, 11, 18, 12, 14, 14, 22, 9, 24, 16, 18, 18, 28, 13, 30, 16, 22, 21, 25, 24, 36, 24, 27, 17, 40, 17, 42, 30, 33, 29, 46, 27, 48, 32, 36, 36, 52, 24, 42, 25, 40, 37, 58, 28, 60, 40, 49, 48, 50, 30, 66, 48, 49, 35, 70, 32, 72, 48, 54, 54, 61, 36
Offset: 1

Views

Author

Vladimir Shevelev, Mar 01 2011

Keywords

Comments

Oex divisors d of an integer n are defined in A186443: those divisors d which are either 1 or numbers such that d^k || n (the highest power of d dividing n) has odd exponent k.
A positive number is called an oex prime if it has only two oex divisors; since every n >= 2 has at least two oex divisors, 1 and n, an oex prime q has only oex divisors 1 and q. A000430 is the sequence of oex primes q, i.e., A186643(q) = 2 iff q is an entry in A000430.
A unique factorization, called an oex prime power factorization, of integers n is introduced as follows: each factor p^e in the conventional prime power factorization n = Product(p^e) is written as (p^2)^(e/2) if e is even, and as (p^2)^floor(e/2)*p if e is odd. This represents n as a product of oex primes of the type q=p^2, with unconstrained exponents e/2, and of oex primes of the type q=p with exponents 0 or 1. (This is similar to splitting n into its squarefree part A007913(n) times A008833(n), followed by an ordinary prime factorization in both parts separately.)
Let n = q_1^a_1*q_2^a_2*... and m = q_1^b_1*q_2^b_2*..., a_i,b_i >= 0 be the oex prime power factorizations of n and m. Define the oex GCD of n and m as [n,m] = q_1^min(a_1,b_1) * q_2^min(a_2,b_2) * .... Then a(n) = Sum_{m=1..n, [m,n]=1} 1, the oex analog of the Euler-phi function.

Examples

			The oex prime power factorization of 16 is 4^2. Since [16,i]=1 for i=1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, and 15, a(16)=12.
The oex prime power factorization of 9 is 9. Thus a(9)=8.
		

Crossrefs

Programs

  • Maple
    highpp := proc(n,d) local nshf,a ; if n mod d <> 0 then 0; else nshf := n ; a := 0 ; while nshf mod d = 0 do nshf := nshf /d ; a := a+1 ; end do: a; end if; end proc:
    oexgcd := proc(n,m) local a,p,kn,km ; a := 1 ; for p in numtheory[factorset](n) do kn := highpp(n,p) ; km := highpp(m,p) ; if type(kn,'even') = type(km,'even') then ; else kn := 2*floor(kn/2) ; km := 2*floor(km/2) ; end if; a := a*p^min(kn,km) ; end do: a ; end proc:
    A186970 := proc(n) local a,i; a := 0 ; for i from 1 to n do if oexgcd(n,i) = 1 then a := a+1 ; end if; end do: a; end proc:
    seq(A186970(n),n=1..80) ; # R. J. Mathar, Mar 18 2011

Formula

Let core(n) = p_1*...*p_r = A007913(n), n/core(n) = A008833(n) = q_1^c_1*...*q_t^c_t, where q_i are squares of primes.
If core(n)=1, then a(n) = n*Product_{j=1..r} (1-1/q_i); if core(n) tends to infinity, then a(n) ~ n * core(n) * Product_{i=1..t} (1-1/q_i) / Product_{j=1..r} (1+p_j).
a(n) <= A064380(n).

A189883 Numbers k such that the square part of k is one greater than the squarefree part of k.

Original entry on oeis.org

12, 240, 1260, 20592, 38220, 65280, 104652, 159600, 233772, 809100, 1047552, 1335180, 1678320, 2083692, 2558400, 3109932, 7308912, 8500140, 9831360, 11313132, 12956400, 18970380, 21376752, 24005100, 26868672, 37008972, 49780080
Offset: 1

Views

Author

Antonio Roldán, Apr 29 2011

Keywords

Comments

The complementary sequence, squarefree part of k is one greater than the square part of k, is A069187.

Examples

			1260 = 2^2*3^2*5*7, square part: 2^2*3^2 = 36, squarefree part: 5*7 = 35, and 36 = 35+1.
		

Programs

  • Maple
    b:= proc() 1 end:
    a:= proc(n) option remember; local i, k;
          if n>1 then a(n-1) fi;
          for k from b(n-1)+1 while 1<>mul(i[2], i=ifactors(k^2-1)[2])
          do od; b(n):=k; k^4-k^2
        end:
    seq(a(n), n=1..50); # Alois P. Heinz, Apr 29 2011
  • Mathematica
    okQ[n_] := Module[{p, e, sfp}, {p, e} = Transpose[FactorInteger[n]]; e = Mod[e, 2]; sfp = Times @@ (p^e); n/sfp - sfp == 1]; Select[Range[10^5], okQ] (* T. D. Noe, Apr 29 2011 *)
  • PARI
    for(n=1,1e3,if(issquarefree(n^2-1),print1(n^4-n^2", "))) \\ Charles R Greathouse IV, Apr 29 2011

Formula

n such that A008833(n) - A007913(n) = 1.
a(n) = x^2 (x^2-1), where x = A067874(n). - T. D. Noe, Apr 29 2011

A220027 a(n) = product(i >= 0, P(n, i)^(2^i)) where P(n, i) = product(p prime, n/2^(i+1) < p <= n/2^i).

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 180, 1260, 5040, 5040, 25200, 277200, 2494800, 32432400, 227026800, 227026800, 3632428800, 61751289600, 61751289600, 1173274502400, 29331862560000, 29331862560000, 322650488160000, 7420961227680000, 601097859442080000, 601097859442080000
Offset: 0

Views

Author

Peter Luschny, Mar 30 2013

Keywords

Comments

a(n) are the partial products of A219964(n).
a(n) divides n!, n!/a(n) = 1, 1, 1, 1, 2, 2, 4, 4, 8, 72, 144, 144, 192...
The swinging factorial (A056040) divides a(n), a(n)/n$ = 1, 1, 1, 1, 2,...
The primorial of n (A034386) divides a(n), a(n)/n# = 1, 1, 1, 1, 2, 2, 6,..
If p^k is the largest power of a prime dividing a(n) then k is 2^n for some n >= 0.
a(n) / A055773(n) is the largest square dividing a(n), a(n) / A055773(n) = A008833(a(n)).

Crossrefs

Cf. A055773.

Programs

  • Maple
    a := proc(n) local k; `if`(n < 2, 1,
    mul(k, k = select(isprime, [$iquo(n, 2)+1..n]))*a(iquo(n,2))^2) end:
    seq(a(i), i=0..25);
  • Sage
    def a(n) :
        if n < 2 : return 1
        return mul(k for k in prime_range(n//2+1,n+1))*a(n//2)^2
    [a(n) for n in (0..25)]

A224777 Triangle with integer geometric mean sqrt(n*m) for 1 <= m <= n, and 0 if sqrt(n*m) is not integer.

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 2, 0, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 7, 0, 4, 0, 0, 0, 0, 0, 8, 3, 0, 0, 6, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0
Offset: 1

Views

Author

Wolfdieter Lang, Apr 25 2013

Keywords

Comments

If the numbers > 1 are replaced by 1 one obtains the corresponding characteristic triangle. a(n,n) = n. a(n,1) = sqrt(n) iff n is a square.
The number of nonzero entries in row n is A000188(n).
For n and m with gcd(n,m) = 1 the nonzero entries are precisely a(N^2,M^2) = N*M, with integers N, M satisfying gcd(N,M) = 1 , 1 <= M <= N. - Wolfdieter Lang, Apr 26 2013

Examples

			The triangle begins:
n\m 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 ...
1:  1
2:  0  2
3:  0  0  3
4:  2  0  0  4
5:  0  0  0  0  5
6:  0  0  0  0  0  6
7:  0  0  0  0  0  0  7
8:  0  4  0  0  0  0  0  8
9:  3  0  0  6  0  0  0  0  9
10: 0  0  0  0  0  0  0  0  0 10
11: 0  0  0  0  0  0  0  0  0  0 11
12: 0  0  6  0  0  0  0  0  0  0  0 12
13: 0  0  0  0  0  0  0  0  0  0  0  0 13
14: 0  0  0  0  0  0  0  0  0  0  0  0  0 14
15: 0  0  0  0  0  0  0  0  0  0  0  0  0  0 15
16: 4  0  0  8  0  0  0  0 12  0  0  0  0  0  0 16
...
a(8,2) = sqrt(16) = 4, a(8,8) = sqrt(64) = 8, h^2 == 0 (mod 8) has A000188(8) = 2 solutions from 1 <= h <= 8, namely h = 4 and h = 8.
		

Crossrefs

Formula

a(n,m) = sqrt(n*m) > 0 if this is an integer and otherwise 0, for 1 <= m <= n. Due to commutativity this restriction is sufficient.
Previous Showing 91-100 of 112 results. Next