cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 200 results. Next

A138404 a(n) = prime(n)^5 - prime(n).

Original entry on oeis.org

30, 240, 3120, 16800, 161040, 371280, 1419840, 2476080, 6436320, 20511120, 28629120, 69343920, 115856160, 147008400, 229344960, 418195440, 714924240, 844596240, 1350125040, 1804229280, 2073071520, 3077056320, 3939040560
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Comments

Subsequence of A061167. - Bernard Schott, Feb 06 2023

Crossrefs

Programs

  • Magma
    [NthPrime((n))^5 - NthPrime((n)): n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, p^5 - p], {n, 1, 50}]; a
    #^5-#&/@Prime[Range[30]] (* Harvey P. Dale, Dec 25 2022 *)
  • PARI
    forprime(p=2,1e3,print1(p^5-p", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = A050997(n) - A000040(n). - Elmo R. Oliveira, Jan 27 2023
From Bernard Schott, Feb 09 2023: (Start)
a(n) = A061167(A000040(n)).
a(n) = 30 * A138430(n).
a(n) = A000040(n) * A006093(n) * A008864(n) * A066872(n). (End)

A175221 a(n) = prime(n) + 4.

Original entry on oeis.org

6, 7, 9, 11, 15, 17, 21, 23, 27, 33, 35, 41, 45, 47, 51, 57, 63, 65, 71, 75, 77, 83, 87, 93, 101, 105, 107, 111, 113, 117, 131, 135, 141, 143, 153, 155, 161, 167, 171, 177, 183, 185, 195, 197, 201, 203, 215, 227, 231, 233, 237, 243, 245, 255, 261, 267, 273, 275
Offset: 1

Views

Author

Jaroslav Krizek, Mar 06 2010

Keywords

Programs

Formula

a(n) = A000040(n) + 4 = A008864(n) + 3 = A052147(n) + 2 = A113395(n) + 1.
a(n) = A175222(n) - 1 = A139049(n) - 2 = A175223(n) - 3.
a(n) = A175224(n) - 4 = A140353(n) - 5 = A175225(n) - 6.

Extensions

More terms from Vincenzo Librandi, Mar 14 2010

A216626 Square array read by antidiagonals, T(n,k) = sum_{c|n,d|k} lcm(c,d) for n>=1, k>=1.

Original entry on oeis.org

1, 3, 3, 4, 7, 4, 7, 12, 12, 7, 6, 15, 10, 15, 6, 12, 18, 28, 28, 18, 12, 8, 28, 24, 27, 24, 28, 8, 15, 24, 30, 42, 42, 30, 24, 15, 13, 31, 32, 60, 16, 60, 32, 31, 13, 18, 39, 60, 56, 72, 72, 56, 60, 39, 18, 12, 42, 28, 51, 48, 70, 48, 51, 28, 42, 12, 28, 36
Offset: 1

Views

Author

Peter Luschny, Sep 12 2012

Keywords

Comments

T(n,n) = A064950(n) = sum_{d|n} d*tau(d^2).
T(n,1) = T(1,n) = A000203(n) = sigma(n).
T(n,2) = T(2,n) = A062731(n) = sigma(2*n).
T(n+1,n) = A083539(n) = sigma(n+1)*sigma(n).
T(prime(n),1) = A008864(n) = prime(n)+1.

Examples

			[-----1---2---3----4----5----6----7----8----9---10---11---12]
[ 1]  1,  3,  4,   7,   6,  12,   8,  15,  13,  18,  12,  28
[ 2]  3,  7, 12,  15,  18,  28,  24,  31,  39,  42,  36,  60
[ 3]  4, 12, 10,  28,  24,  30,  32,  60,  28,  72,  48,  70
[ 4]  7, 15, 28,  27,  42,  60,  56,  51,  91,  90,  84, 108
[ 5]  6, 18, 24,  42,  16,  72,  48,  90,  78,  48,  72, 168
[ 6] 12, 28, 30,  60,  72,  70,  96, 124,  84, 168, 144, 150
[ 7]  8, 24, 32,  56,  48,  96,  22, 120, 104, 144,  96, 224
[ 8] 15, 31, 60,  51,  90, 124, 120,  83, 195, 186, 180, 204
[ 9] 13, 39, 28,  91,  78,  84, 104, 195,  55, 234, 156, 196
[10] 18, 42, 72,  90,  48, 168, 144, 186, 234, 112, 216, 360
[11] 12, 36, 48,  84,  72, 144,  96, 180, 156, 216,  34, 336
[12] 28, 60, 70, 108, 168, 150, 224, 204, 196, 360, 336, 270
.
Displayed as a triangular array:
    1;
    3,  3;
    4,  7,  4;
    7, 12, 12,  7;
    6, 15, 10, 15,  6;
   12, 18, 28, 28, 18, 12;
    8, 28, 24, 27, 24, 28,  8;
   15, 24, 30, 42, 42, 30, 24, 15;
   13, 31, 32, 60, 16, 60, 32, 31, 13;
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    T:= (n, k) -> add(add(ilcm(c, d), c=divisors(n)), d=divisors(k)):
    seq (seq (T(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Sep 12 2012
  • Mathematica
    T[n_, k_] := Sum[LCM[c, d], {c, Divisors[n]}, {d, Divisors[k]}]; Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 25 2014 *)
  • Sage
    def A216626(n, k) :
        cp = cartesian_product([divisors(n), divisors(k)])
        return reduce(lambda x,y: x+y, map(lcm, cp))
    for n in (1..12): [A216626(n,k) for k in (1..12)]

A239703 Number of bases b > 1 for which the base-b digital sum of n is b.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 2, 0, 2, 2, 2, 1, 4, 0, 2, 1, 3, 1, 4, 1, 4, 2, 1, 1, 4, 1, 1, 2, 4, 0, 5, 0, 5, 3, 1, 2, 7, 0, 2, 3, 5, 0, 4, 0, 4, 3, 1, 1, 5, 1, 3, 2, 3, 0, 5, 2, 6, 1, 1, 0, 8, 0, 2, 2, 5, 3, 5, 1, 2, 2, 4, 1, 8, 0, 1, 4, 3, 2, 4, 1, 6, 3, 2, 0, 10, 2
Offset: 0

Views

Author

Hieronymus Fischer, Mar 31 2014

Keywords

Comments

For the definition of the digital sum, see A007953.
For reference, we write digitSum_b(x) for the base-b digital sum of x according to A007953 (with general base b).
The bases counted exclude the special base 1. The base-1 expansion of a natural number is defined as 1=1_1, 2=11_1, 3=111_1 and so on. As a result, the base-1 digital sum of n is n. The inclusion of base b = 1 would lead to a(1) = 1 instead of a(1) = 0. All other terms remain unchanged.
For odd n > 1 and b := (n + 1)/2 we have digitSum_b(n) = b, and thus a(n) >= 1.
The digitSum_b(n) is < b for bases b which satisfy b > floor((n+1)/2), and thus a(n) <= floor((n+1)/2).
If b is a base such that the base-b digital sum of n is b, then b < n and b - 1 is a divisor of n - 1, thus the number of such bases is limited by the number of divisors of n - 1 (see formula section).
If p < n - 1 is a divisor of n - 1 which satisfy p >= sqrt(n - 1), then digitSum_b(n) = b for b := p + 1. This leads to a lower bound for a(n) (see formula section).
If b - 1 is a divisor of n - 1, then b is not necessarily a base such that base-b digital sum of n is b. Example: 1, 2, 3, 4, 6, 8, 12, 16, and 24 are the divisors < 48 of 48, but digitSum_2(49) = 3, digitSum_3(49) = 5, digitSum_5(49) = 9, digitSum_7(49) = 1.
a(b*n) > 0 for all b > 1 which satisfy digitSum_b(n) = b.
Example 1: digitSum_2(3) = 2, hence a(2*3) > 0.
Example 2: digitSum_3(5) = 3, hence a(3*5) > 0.
The first n with a(n) = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... are n = 3, 5, 17, 13, 31, 57, 37, 61, 81, 85, ... .

Examples

			a(1) = 1, since digitSum_1(1) = 1 and digitSum_b(1) <> b for all b > 1.
a(2) = 0, since digitSum_1(2) = 2 (because of 2 = 11_1), and digitSum_2(2) = 1 (because of 2 = 10_2), and digitSum_b(2) = 2 for all b > 2.
a(3) = 1, since digitSum_1(3) = 3 (because of 3 = 111_1), and digitSum_2(3) = 2 (because of 3 = 11_2), and digitSum_3(3) = 1 (because of 3 = 10_3), and digitSum_b(3) = 3 for all b > 3.
a(5) = 2, since digitSum_1(5) = 5 (because of 5 = 11111_1), and digitSum_2(5) = 2 (because of 5 = 101_2), and digitSum_3(5) = 3 (because of 5 = 12_3), and digitSum_4(5) = 2 (because of 5 = 11_4), and digitSum_5(5) = 1 (because of 5 = 10_5), and digitSum_b(5) = 5 for all b > 5.
		

Crossrefs

Cf. A000040; A000005 (definition of sigma_0(n)).

Programs

  • Smalltalk
    "> Version 1: simple calculation for small numbers.
      Answer the number of bases b such that the digital sum of n in base b is b.
      Valid for bases b >= 1, thus returning a(1) = 1.
      Using digitalSum from A007953.
      Usage: n numOfBasesWithAltDigitalSumEQBase
      Answer: a(n)"
    numOfBasesWithDigitalSumEQBase
      | numBases b bmax |
      numBases := 0.
      bmax := self + 1 // 2.
      b := 0.
      [b < bmax] whileTrue: [
         b := b + 1
         (self digitalSum: b) = b
         ifTrue: [numBases := numBases + 1]].
      ^numBases
    -----------
    "> Version 2: accelerated calculation for large numbers.
      Answer the number of bases b such that the digital sum of n in base b is b.
      Valid for bases b > 1, thus returning a(1) = 0.
      Using digitalSum from A007953.
      Usage: n numOfBasesWithAltDigitalSumEQBase
      Answer: a(n)"
    numOfBasesWithDigitalSumEQBase
      | numBases div b bsize |
      self < 3 ifTrue: [^0].
      div := (self - 1) divisors.
      numBases := 0.
      bsize := div size - 1.
      1 to: bsize do: [ :i | b := (div at: i) + 1.
       (self digitalSum: b) = b
           ifTrue: [numBases := numBases + 1] ].
      ^numBases

Formula

a(n) = 0, if and only if n is a term of A187813.
a(A187813(n)) = 0.
a(A239708(n)) = 1, for n > 0.
a(A018900(n)) > 0, for n > 0.
a(A079696(n)) > 0, for n > 0.
a(A008864(n)) <= 1, for n > 0.
a(n) <= 1, if n - 1 is a prime.
a(n) <= sigma_0(n - 1) - 1, for n > 1.
a(n) >= floor((sigma_0(n-1)-1)/2), for n > 1.

A377781 First differences of A065514(n) = greatest number < prime(n) that is 1 or a prime-power.

Original entry on oeis.org

1, 2, 1, 4, 2, 5, 1, 2, 8, 2, 3, 5, 4, 2, 6, 4, 6, 5, 3, 4, 2, 8, 2, 6, 8, 4, 2, 4, 2, 16, 3, 3, 6, 2, 10, 2, 6, 6, 6, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 4, 13, 1, 6, 6, 2, 6, 4, 8, 4, 14, 4, 2, 4, 14, 12, 4, 2, 4, 8, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2024

Keywords

Comments

Note 1 is a power of a prime but not a prime-power.

Crossrefs

Differences of A065514, which is the restriction of A031218 (differences A377782).
The opposite is A377703 (restriction of A000015), differences of A345531.
The opposite for nonsquarefree is A377784, differences of A377783.
For nonsquarefree we have A378034, differences of A378032 (restriction of A378033).
The opposite for squarefree is A378037, differences of A112926 (restriction of A067535).
For squarefree we have A378038, differences of A112925 (restriction of A070321).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime-powers, differences A057820.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A361102 lists the non-powers of primes, differences A375708.
Prime-powers between primes:
- A053607 primes
- A080101 count (exclusive)
- A304521 by bits
- A366833 count
- A377057 positive
- A377286 zero
- A377287 one
- A377288 two

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,Prime[n]-1,#>1&&!PrimePowerQ[#]&],{n,100}]]

A077068 Semiprimes of the form prime + 1.

Original entry on oeis.org

4, 6, 14, 38, 62, 74, 158, 194, 278, 314, 398, 422, 458, 542, 614, 662, 674, 734, 758, 878, 998, 1094, 1154, 1202, 1214, 1238, 1322, 1382, 1454, 1622, 1658, 1754, 1874, 1934, 1994, 2018, 2138, 2342, 2474, 2558, 2594, 2798, 2858, 2918, 3062, 3218, 3254
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Comments

a(n) = A005383(n)+1 = 2*A005382(n).
There are 672 semiprimes of form prime+1 below 100000.
a(n) = A232342(n) + A077065(n). - Reinhard Zumkeller, Dec 16 2013

Examples

			A001358(25)=74=2*37 is a term as 74=A000040(21)+1=73+1.
		

Crossrefs

Programs

Formula

A010051(A008864(n)/2) = A064911(A008864(n)) = 1. - Reinhard Zumkeller, Nov 22 2013

A131991 a(n) = 1 + prime(n) + prime(n)^2 + prime(n)^3.

Original entry on oeis.org

15, 40, 156, 400, 1464, 2380, 5220, 7240, 12720, 25260, 30784, 52060, 70644, 81400, 106080, 151740, 208920, 230764, 305320, 363024, 394420, 499360, 578760, 712980, 922180, 1040604, 1103440, 1236600, 1307020, 1455780, 2064640, 2265384
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

Number of points and lines for the prime(n)-Cremona-Richmond configuration. - Carlos Segovia Gonzalez, Jul 30 2020

Examples

			a(4)=400 because the 4th prime is 7, 7^3=343, 7^2=49, and 343+49+7+1=400.
		

Crossrefs

Cf. A000040, A000203. - Zak Seidov, Feb 13 2016

Programs

  • Magma
    [1+NthPrime(n)+NthPrime(n)^2+NthPrime(n)^3: n in [1..40]]; // Vincenzo Librandi, Dec 27 2010
  • Maple
    A131991:= n -> map (p -> p^(3)+p^(2)+p+1, ithprime(n)):
    seq (A131991(n), n=1..32); # Jani Melik, Jan 25 2011
  • Mathematica
    #^3 + #^2 + # + 1 &/@Prime[Range[100]] (* Vincenzo Librandi, Mar 20 2014 *)

Formula

a(n) = 1 + A060800(n)*A000040(n).
a(n) = (A030514(n) - 1)/A006093(n).
a(n) = A000203(A000040(n)^3). - Zak Seidov, Feb 13 2016

A131993 a(n) = 1 + prime(n) + prime(n)^2 + prime(n)^3 + prime(n)^4 + prime(n)^5.

Original entry on oeis.org

63, 364, 3906, 19608, 177156, 402234, 1508598, 2613660, 6728904, 21243690, 29583456, 71270178, 118752606, 150508644, 234330768, 426237714, 727250580, 858672906, 1370581548, 1830004056, 2101864254, 3116505840, 3987077724, 5647514670, 8676791718, 10615201506
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

a(n) = 1 + A131992(n)*A000040(n).

Crossrefs

Programs

Formula

a(n) = (A030516(n) - 1)/A006093(n).

A139049 a(n) = prime(n) + 6.

Original entry on oeis.org

8, 9, 11, 13, 17, 19, 23, 25, 29, 35, 37, 43, 47, 49, 53, 59, 65, 67, 73, 77, 79, 85, 89, 95, 103, 107, 109, 113, 115, 119, 133, 137, 143, 145, 155, 157, 163, 169, 173, 179, 185, 187, 197, 199, 203, 205, 217, 229, 233, 235, 239, 245, 247, 257, 263, 269, 275, 277
Offset: 1

Views

Author

Odimar Fabeny, Jun 02 2008

Keywords

Comments

a(n) = A000040(n) + 6 = A008864(n) + 5 = A052147(n) + 4 = A113395(n) + 3 = A175221(n) + 2 = A175222(n) + 1 = A175223(n) - 1 = A175224(n) - 2 = A140353(n) - 3 = A175225(n) - 4. - Jaroslav Krizek, Mar 06 2010

Crossrefs

Cf. A140353.

Programs

Extensions

Edited by Michael B. Porter, Jan 28 2010

A175223 a(n) = prime(n) + 7.

Original entry on oeis.org

9, 10, 12, 14, 18, 20, 24, 26, 30, 36, 38, 44, 48, 50, 54, 60, 66, 68, 74, 78, 80, 86, 90, 96, 104, 108, 110, 114, 116, 120, 134, 138, 144, 146, 156, 158, 164, 170, 174, 180, 186, 188, 198, 200, 204, 206, 218, 230, 234, 236, 240, 246, 248, 258, 264, 270, 276, 278
Offset: 1

Views

Author

Jaroslav Krizek, Mar 06 2010

Keywords

Comments

a(n) = A000040(n) + 7 = A008864(n) + 6 = A052147(n) + 5 = A113395(n) + 4 = A175221(n) + 3 = A175222 (n) + 2 = A139049(n) + 1 = A175224(n) - 1 = A140353(n) - 2 = A175225(n) - 3.

Programs

Extensions

More terms from Vincenzo Librandi, Mar 14 2010
Previous Showing 61-70 of 200 results. Next