cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 200 results. Next

A175317 a(n) = Sum_{d|n} A007955(d) where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 3, 4, 11, 6, 42, 8, 75, 31, 108, 12, 1778, 14, 206, 234, 1099, 18, 5901, 20, 8116, 452, 498, 24, 333618, 131, 692, 760, 22166, 30, 810372, 32, 33867, 1104, 1176, 1238, 10085333, 38, 1466, 1538, 2568180, 42, 3112382, 44, 85690, 91386, 2142, 48, 255138610
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

Examples

			For n = 4, with b(n) = A007955(n), a(4) = b(1) + b(2) + b(4) = 1 + 2 + 8 = 11.
		

Crossrefs

Subsequences: A008864, A181388 \ {0}.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(DivisorSigma[0, #]/2) &]; Array[a, 50] (* Amiram Eldar, Oct 23 2021 *)
  • PARI
    a(n) = sumdiv(n, d, vecprod(divisors(d))); \\ Michel Marcus, Dec 09 2014 and Oct 23 2021
    
  • Python
    from math import isqrt
    from sympy import divisor_count, divisors
    def A175317(n): return sum(isqrt(d)**c if (c:=divisor_count(d)) & 1 else d**(c//2) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 24 2022

Formula

From Bernard Schott, Oct 26 2021: (Start)
a(1) = 1 (the only fixed point).
a(p) = p+1 for prime p only.
a(2^k) = A181388(k+1). (End)

Extensions

Corrected by Jaroslav Krizek, Apr 02 2010
Edited and more terms from Michel Marcus, Dec 09 2014

A346871 Irregular triangle read by rows in which row n lists the row A000040(n) of A237591, n >= 1.

Original entry on oeis.org

2, 2, 1, 3, 2, 4, 2, 1, 6, 3, 1, 1, 7, 3, 2, 1, 9, 4, 2, 1, 1, 10, 4, 2, 2, 1, 12, 5, 2, 2, 1, 1, 15, 6, 3, 2, 1, 1, 1, 16, 6, 3, 2, 2, 1, 1, 19, 7, 4, 2, 2, 1, 1, 1, 21, 8, 4, 2, 2, 2, 1, 1, 22, 8, 4, 3, 2, 1, 2, 1, 24, 9, 4, 3, 2, 2, 1, 1, 1, 27, 10, 5, 3, 2, 2, 1, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 06 2021

Keywords

Comments

The characteristic shape of the symmetric representation of sigma(prime(n)) consists in that the diagram contains exactly two regions (or parts) and each region is a rectangle (or bar), except for the first prime number (the 2) whose symmetric representation of sigma(2) consists of only one region which contains three cells.
So knowing this characteristic shape we can know if a number is prime (or not) just by looking at the diagram, even ignoring the concept of prime number.
Therefore we can see a geometric pattern of the exact distribution of prime numbers in the stepped pyramid described in A245092.
T(n,k) is the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(prime(n)), from the border to the center, hence the sum of the n-th row of triangle is equal to A000040(n).
T(n,k) is also the difference between the total number of partitions of all positive integers <= n-th prime into exactly k consecutive parts, and the total number of partitions of all positive integers <= n-th prime into exactly k + 1 consecutive parts.

Examples

			Triangle begins:
   2;
   2, 1;
   3, 2;
   4, 2, 1;
   6, 3, 1, 1;
   7, 3, 2, 1;
   9, 4, 2, 1, 1;
  10, 4, 2, 2, 1;
  12, 5, 2, 2, 1, 1;
  15, 6, 3, 2, 1, 1, 1;
  16, 6, 3, 2, 2, 1, 1;
  19, 7, 4, 2, 2, 1, 1, 1;
  21, 8, 4, 2, 2, 2, 1, 1;
  22, 8, 4, 3, 2, 1, 2, 1;
  24, 9, 4, 3, 2, 2, 1, 1, 1;
...
Illustration of initial terms:
Row 1:    _
        _| |
       |_ _|
         2                         Semilength = 2
.
Row 2:      _
           | |
        _ _|_|
       |_ _|1                      Semilength = 3
         2
.
Row 3:          _
               | |
               | |
              _|_|
        _ _ _|                     Semilength = 5
       |_ _ _|2
          3
.
Row 4:              _
                   | |
                   | |
                   | |
                  _|_|
                _|
        _ _ _ _| 1                 Semilength = 7
       |_ _ _ _|2
           4
.
Row 5:                         _
                              | |
                              | |
                              | |
                              | |
                              | |
                           _ _|_|
                         _|
                       _|1         Semilength = 11
                      |1
           _ _ _ _ _ _|
          |_ _ _ _ _ _|3
                6
.
The area (also the number of cells) of the successive diagrams gives A008864.
		

Crossrefs

Row sums give A000040.
For the characteristic shape of sigma(A000079(n)) see A346872.
For the characteristic shape of sigma(A000217(n)) see A346873.
For the visualization of Mersenne numbers A000225 see A346874.
For the characteristic shape of sigma(A000384(n)) see A346875.
For the characteristic shape of sigma(A000396(n)) see A346876.
For the characteristic shape of sigma(A008588(n)) see A224613.

A375738 Minimum of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.

Original entry on oeis.org

2, 3, 6, 7, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 29, 30, 31, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.

Examples

			The initial anti-runs are the following, whose minima are a(n):
  (2)
  (3,5)
  (6)
  (7,10)
  (11)
  (12)
  (13)
  (14)
  (15,17)
  (18)
  (19)
  (20)
  (21)
  (22)
  (23)
  (24,26,28)
		

Crossrefs

For composite numbers we have A005381, runs A008864 (except first term).
For prime-powers we have A120430, runs A373673 (except first term).
For squarefree numbers we have A373408, runs A072284.
For nonsquarefree numbers we have A373410, runs A053806.
For non-prime-powers we have A373575, runs A373676.
For anti-runs of non-perfect-powers:
- length: A375736
- first: A375738 (this)
- last: A375739
- sum: A375737
For runs of non-perfect-powers:
- length: A375702
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Min/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most

A055669 Number of prime Hurwitz quaternions of norm prime(n).

Original entry on oeis.org

24, 96, 144, 192, 288, 336, 432, 480, 576, 720, 768, 912, 1008, 1056, 1152, 1296, 1440, 1488, 1632, 1728, 1776, 1920, 2016, 2160, 2352, 2448, 2496, 2592, 2640, 2736, 3072, 3168, 3312, 3360, 3600, 3648, 3792, 3936, 4032, 4176, 4320, 4368, 4608, 4656, 4752
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

Number of vectors of norm p in D_4 lattice (cf. A004011).

References

  • L. E. Dickson, Algebras and Their Arithmetics, Dover, 1960, Section 91.

Crossrefs

Cf. A240068 (number of prime Lipschitz quaternions having norm prime(n)).

Programs

  • Mathematica
    Join[{24},24(#+1)&/@Prime[Range[2,50]]] (* Harvey P. Dale, Mar 12 2013 *)

Formula

a(n) = 24 * (prime(n)+1) = 24 * A008864(n) for n >= 2.
a(n) = 24*A055670(n).
a(n) = A004011(prime(n)). - R. J. Mathar, Aug 01 2025

Extensions

More terms from David W. Wilson, May 02 2001

A077067 Squarefree numbers of the form prime + 1.

Original entry on oeis.org

3, 6, 14, 30, 38, 42, 62, 74, 102, 110, 114, 138, 158, 174, 182, 194, 230, 258, 278, 282, 314, 318, 354, 374, 390, 398, 402, 410, 422, 434, 458, 462, 510, 542, 570, 602, 614, 618, 642, 654, 662, 674, 678, 710, 734, 758, 762, 770, 798, 822, 830, 854, 858, 878
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Examples

			A005117(28) = 42 = 2*3*7 is a term as 42 = A000040(13) + 1 = 41+1.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]]+1,SquareFreeQ] (* Harvey P. Dale, Aug 20 2017 *)
  • PARI
    isok(n) = issquarefree(n) && isprime(n-1); \\ Michel Marcus, Mar 22 2016
    
  • PARI
    lista(nn) = forprime(p=2, nn, if (issquarefree(p+1), print1(p+1, ", "))); \\ Michel Marcus, Mar 22 2016

Formula

A077066(a(n)) = a(n).
a(n) = A049097(n)+1. - Zak Seidov, Aug 15 2006

A084922 a(n) = (prime(n)-1)*(prime(n)+1)/6.

Original entry on oeis.org

4, 8, 20, 28, 48, 60, 88, 140, 160, 228, 280, 308, 368, 468, 580, 620, 748, 840, 888, 1040, 1148, 1320, 1568, 1700, 1768, 1908, 1980, 2128, 2688, 2860, 3128, 3220, 3700, 3800, 4108, 4428, 4648, 4988, 5340, 5460, 6080, 6208, 6468, 6600, 7420
Offset: 3

Views

Author

Reinhard Zumkeller, Jun 11 2003

Keywords

Crossrefs

Programs

  • Magma
    [(p^2-1)/6: p in PrimesInInterval(4, 250)]; // Vincenzo Librandi, Apr 11 2013
    
  • Mathematica
    Select[Range[0, 7000], PrimeQ[Sqrt[6 # + 1]]&] (* Vincenzo Librandi, Apr 11 2013 *)
    (Prime[Range[3,60]]^2 -1)/6 (* G. C. Greubel, May 02 2024 *)
  • PARI
    a(n) = (prime(n)^2-1)/6; \\ Michel Marcus, Mar 22 2016
    
  • SageMath
    [(n^2-1)//6 for n in prime_range(4,301)] # G. C. Greubel, May 02 2024

Formula

a(n) = A084920(n)/6.
a(n) = A084921(n)/3.

A175144 a(n) = d(p(n)-1) + d(p(n)+1), where p(n) is the n-th prime, and where d(m) is the number of divisors of m.

Original entry on oeis.org

3, 5, 7, 8, 10, 10, 11, 12, 12, 14, 14, 13, 16, 14, 14, 14, 16, 16, 14, 20, 16, 18, 16, 20, 18, 17, 16, 16, 20, 18, 20, 20, 16, 20, 18, 20, 16, 16, 20, 14, 22, 26, 22, 18, 21, 24, 22, 20, 16, 20, 20, 28, 26, 26, 17, 20, 22, 26, 16, 24, 14, 18, 24, 24, 20, 14, 22, 26, 16, 24, 20
Offset: 1

Views

Author

Leroy Quet, Feb 24 2010

Keywords

Comments

If a(n) is a record, then the n-th prime is in sequence A090481.

Crossrefs

Programs

  • Maple
    taudiff := proc(n) numtheory[tau](n-1)+numtheory[tau](n+1) ; end proc: A175144 := proc(n) taudiff(ithprime(n)) ; end proc: seq(A175144(n),n=1..80) ; # R. J. Mathar, Mar 03 2010
  • Mathematica
    Table[p = Prime[n]; DivisorSigma[0, p - 1] + DivisorSigma[0, p + 1], {n, 100}]
    Total[DivisorSigma[0,{#-1,#+1}]]&/@Prime[Range[80]] (* Harvey P. Dale, Feb 25 2012 *)
  • PARI
    a(n) = numdiv(prime(n)-1) + numdiv(prime(n)+1); \\ Amiram Eldar, Apr 17 2024
    
  • PARI
    lista(pmax) = forprime(p = 1, pmax, print1(numdiv(p-1) + numdiv(p+1), ", ")); \\ Amiram Eldar, Apr 17 2024

Formula

a(n) = A000005(A006093(n)) + A000005(A008864(n)). - R. J. Mathar, Mar 03 2010

Extensions

More terms from R. J. Mathar, Mar 03 2010

A214583 Numbers m such that for all k with gcd(m, k) = 1 and m > k^2, m - k^2 is prime.

Original entry on oeis.org

3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 48, 54, 60, 62, 68, 72, 80, 84, 90, 98, 108, 110, 132, 138, 140, 150, 180, 182, 198, 252, 318, 360, 398, 468, 570, 572, 930, 1722
Offset: 1

Views

Author

Hans Ruegg, Jul 21 2012

Keywords

Comments

No further terms < 10^10.
This sequence is based on a remark in a paper distributed over the Internet (see the Leo Moser link) under the heading "Unsolved Problems and Conjectures" (page 84):
"Is 968 the largest number n such that for all k with (n, k) = 1 and n > k^2, n - k^2 is prime? (Erdős)"
The statement by Moser contains an error: 968 does NOT have this property (968-25*25 = 343 = 7*7*7), and the largest such number (1722) is larger than 968.
A224076(n) <= A064272(a(n)+1). - Reinhard Zumkeller, Mar 31 2013

Examples

			For example, the number 20 is part of this sequence because 20-1*1 = 19 (prime), and 20-3*3 = 11 (prime). Not considered are 20-2*2 and 20-4*4, because 2 and 4 are not relative primes to 20.
		

Crossrefs

Cf. A065428.
Cf. A224075; subsequence of A008864.

Programs

  • Haskell
    a214583 n = a214583_list !! (n-1)
    a214583_list = filter (p 3 1) [2..] where
       p i k2 x = x <= k2 || (gcd k2 x > 1 || a010051' (x - k2) == 1) &&
                             p (i + 2) (k2 + i) x
    -- Reinhard Zumkeller, Mar 31 2013, Jul 22 2012
  • Mathematica
    Reap[For[p = 2, p < 2000, p = NextPrime[p], n = p+1; q = True; k = 1; While[k*k < n, If[GCD[k, n] == 1, If[! PrimeQ[n - k^2], q = False; Break[]]]; k += 1]; If[q, Sow[n]]]] [[2, 1]] (* Jean-François Alcover, Oct 11 2013, after Joerg Arndt's Pari program *)
    gQ[n_]:=AllTrue[n-#^2&/@Select[Range[Floor[Sqrt[n]]],CoprimeQ[ #, n]&], PrimeQ]; Select[Range[2000],gQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 02 2018 *)
  • PARI
    N=10^10;
    default(primelimit,N);
    { forprime (p=2, N,
        n = p + 1;
        q = 1;
        k = 1;
        while ( k*k < n,
            if ( gcd(k,n)==1,
                if ( ! isprime(n-k^2),  q=0; break() );
            );
            k += 1;
        );
        if ( q, print1(n,", ") );
    ); }
    /* Joerg Arndt, Jul 21 2012 */
    

A250177 Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A250392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), this sequence (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A244150 (524287), A243959 (1048576).
Cf. A085398 (Least k>1 such that Phi_n(k) is prime).

Programs

  • Mathematica
    a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
  • PARI
    {is(n)=isprime(polcyclo(21,n))};
    for(n=1,100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018

A304411 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)*k_j).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 9, 8, 18, 12, 24, 14, 24, 24, 12, 18, 24, 20, 36, 32, 36, 24, 36, 12, 42, 12, 48, 30, 72, 32, 15, 48, 54, 48, 48, 38, 60, 56, 54, 42, 96, 44, 72, 48, 72, 48, 48, 16, 36, 72, 84, 54, 36, 72, 72, 80, 90, 60, 144, 62, 96, 64, 18, 84, 144, 68, 108, 96, 144, 72, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(24) = a(2^3*3) = (2 + 1)*3 * (3 + 1)*1 = 36.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((#[[1]] + 1) #[[2]] & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 72}]
    Table[Total[Select[Divisors[n], SquareFreeQ]] DivisorSigma[0, n/Last[Select[Divisors[n], SquareFreeQ]]], {n, 72}]
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); (p+1)*e)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A005361(n)*A048250(n) = A000005(n/A007947(n))*A000203(A007947(n)).
a(p^k) = (p + 1)*k where p is a prime and k > 0.
a(n) = Product_{p|n} (p + 1) if n is a squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A072691 * A330596 = 0.6156455744... . - Amiram Eldar, Nov 30 2022
Previous Showing 91-100 of 200 results. Next