cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 53 results. Next

A291482 Expansion of e.g.f. arcsin(x)*exp(x).

Original entry on oeis.org

0, 1, 2, 4, 8, 24, 80, 456, 2368, 20352, 139648, 1577984, 13327360, 185992832, 1860708096, 30882985472, 356724338688, 6860887896064, 89815091306496, 1963843714723840, 28724760194564096, 703639672161697792, 11370790299166343168, 308435832182144040960, 5456591088206554333184, 162354575283061816197120
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2017

Keywords

Examples

			E.g.f.: A(x) = x/1! + 2*x^2/2! + 4*x^3/3! + 8*x^4/4! + 24*x^5/5! + ...
		

Crossrefs

Cf. A001818, A009545, A012316, A081919 (first differences).

Programs

  • Maple
    a:=series(arcsin(x)*exp(x),x=0,26): seq(n!*coeff(a,x,n),n=0..25); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 25; Range[0, nmax]! CoefficientList[Series[ArcSin[x] Exp[x], {x, 0, nmax}], x]
    nmax = 25; Range[0, nmax]! CoefficientList[Series[Exp[x] x Sqrt[1 - x^2]/(1 + ContinuedFractionK[-2 x^2 Floor[(k + 1)/2] (2 Floor[(k + 1)/2] - 1), 2 k + 1, {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 25; Range[0, nmax]! CoefficientList[Series[Sum[(x^(2 k + 1) Pochhammer[1/2, k])/(k! + 2 k k!), {k, 0, Infinity}] Exp[x], {x, 0, nmax}], x]
    Table[Sum[Binomial[n,2k+1]Binomial[2k,k] (2k)!/4^k,{k,0,(n-1)/2}],{n,0,12}] (* Emanuele Munarini, Dec 17 2017 *)
  • Maxima
    makelist(sum(binomial(n,2*k+1)*binomial(2*k,k)*(2*k)!/4^k,k,0,floor((n-1)/2)),n,0,12); /* Emanuele Munarini, Dec 17 2017 */
    
  • PARI
    x='x+O('x^99); concat(0, Vec(serlaplace(asin(x)*exp(x)))) \\ Altug Alkan, Dec 17 2017

Formula

E.g.f.: exp(x)*x*sqrt(1 - x^2)/(1 - 1*2*x^2/(3 - 1*2*x^2/(5 - 3*4*x^2/(7 - 3*4*x^2/(9 - ...))))), a continued fraction.
a(n) ~ (exp(2) - (-1)^n) * n^(n-1) / exp(n+1). - Vaclav Kotesovec, Aug 26 2017
From Emanuele Munarini, Dec 17 2017: (Start)
a(n) = Sum_{k=0..(n-1)/2} binomial(n,2*k+1)*binomial(2*k,k)* (2k)!/4^k.
a(n+4) - 2*a(n+3) - (n^2+4*n+3)*a(n+2) + (n+2)*(2*n+3)*a(n+1) - (n+1)*(n+2)*a(n) = 0. (End)

A348691 For any nonnegative number n with binary expansion Sum_{k >= 0} b_k * 2^k, a(n) is the imaginary part of f(n) = Sum_{k >= 0} b_k * (i^Sum_{j = 0..k-1} b_j) * (1+i)^k (where i denotes the imaginary unit); sequence A348690 gives the real part.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 1, -1, 2, -2, -1, -1, 0, -2, -1, 1, 0, -4, -3, 1, -2, 0, 1, 3, -2, -2, -1, 3, 0, 2, 3, 1, -4, -4, -3, 5, -2, 4, 5, 3, -2, 2, 3, 3, 4, 2, 3, -3, -4, 0, 1, 5, 2, 4, 5, -1, 2, 2, 3, -1, 4, -2, -1, -3, -8, 0, 1, 9, 2, 8, 9, -1, 2, 6, 7, -1, 8, -2
Offset: 0

Views

Author

Rémy Sigrist, Oct 29 2021

Keywords

Comments

The function f defines a bijection from the nonnegative integers to the Gaussian integers.
The function f has similarities with A065620; here the nonzero digits in base 1+i cycle through powers of i, there nonzero digits in base 2 cycle through powers of -1.
If we replace 1's in binary expansions by powers of i from left to right (rather than right to left as here), then we obtain the Lévy C curve (A332251, A332252).

Crossrefs

See A332251, A332252 for a similar sequence.

Programs

  • PARI
    a(n) = { my (v=0, o=0, x); while (n, n-=2^x=valuation(n, 2); v+=I^o * (1+I)^x; o++); imag(v) }

Formula

a(2^k) = A009545(k) for any k >= 0.

A144081 Eigentriangle generated from expansion of sin(x)*exp(x), row sums = (2^n - 1).

Original entry on oeis.org

1, 2, 1, 2, 2, 3, 0, 2, 6, 7, -4, 0, 6, 14, 15, -8, -4, 0, 14, 30, 31, -8, -8, -12, 0, 30, 62, 63, 0, -8, -24, -28, 0, 62, 126, 127, 16, 0, -24, -56, -60, 0, 126, 254, 255, 32, 16, 0, -56, -120, -124, 0, 254, 510, 511, 32, 32, 48, 0, -120, -248, -252, 0, 510, 1022, 1023
Offset: 1

Views

Author

Gary W. Adamson, Sep 10 2008

Keywords

Comments

Row sums = (2^n - 1): (1, 3, 7, 15, 31,...) = INVERT transform of A009545 starting with offset 1. Right border = (1, 1, 3, 7, 15,...).
Left border = A009545, = expansion of sin(x)*exp(x) starting with offset 1.
Sum of row n terms = rightmost term of next row.

Examples

			First few rows of the triangle =
   1;
   2,  1;
   2,  2,   3;
   0,  2,   6,   7;
  -4,  0,   6,  14,  15;
  -8, -4,   0,  14,  30, 31;
  -8, -8, -12,   0,  30, 62,  63;
   0, -8, -24, -28,   0, 62, 126, 127;
  16,  0, -24, -56, -60,  0, 126, 254, 255;
  ...
Row 4 = (0, 2, 6, 7) pairwise product of (0, 2, 2, 1) and (1, 1, 3, 7) = (0*1, 2*1, 2*3, 1*7); where (1, 2, 2, 0,...) = the first 4 terms of A009545 with offset 1.
		

Crossrefs

Programs

  • PARI
    a25(n) = if (n, 2^n-1, 1); \\ A000225
    a45(n) = (1+I)^(n-2) + (1-I)^(n-2); \\ A009545
    T(n,k) = if (n>=k, a45(n-k+1)*a25(k-1), 0);
    row(n) = vector(n, k, a45(n-k+1)*a25(k-1)); \\ Michel Marcus, Nov 20 2022

Formula

T(n,k) = A009545(n-k+1)*A000225(k-1).
A009545 = expansion of sin(x)*exp(x), starting with offset 1: (1, 2, 2, 0, -4, -8, -8,...).
A000225(k-1) = A000225 offset: (1, 1, 3, 7, 15, 31, 63, 127,...).
These operations = the following: Matrix A = an infinite lower triangular matrix with rows = A009545 subsequences decrescendo: (1; 2,1; 2,2,1; 0,2,2,1; -4,0,2,2,1;...) and matrix B = an infinite lower triangular matrix with (1, 1, 3, 7, 15,...) in the main diagonal and the rest zeros.
This triangle = A*B.

A167925 Triangle, T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2), read by rows.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 0, 2, 6, 12, -1, 0, 9, 32, 75, -1, -4, 9, 80, 275, 684, 0, -8, 0, 192, 1000, 3240, 8232, 1, -8, -27, 448, 3625, 15336, 47677, 122368, 1, 0, -81, 1024, 13125, 72576, 276115, 835584, 2158569, 0, 16, -162, 2304, 47500, 343440, 1599066, 5705728, 16953624, 44010000
Offset: 0

Views

Author

Roger L. Bagula, Nov 15 2009

Keywords

Examples

			Triangle begins as:
   0;
   1,  1;
   1,  2,   3;
   0,  2,   6,   12;
  -1,  0,   9,   32,    75;
  -1, -4,   9,   80,   275,   684;
   0, -8,   0,  192,  1000,  3240,   8232;
   1, -8, -27,  448,  3625, 15336,  47677, 122368;
   1,  0, -81, 1024, 13125, 72576, 276115, 835584, 2158569;
		

Crossrefs

Programs

  • Magma
    A167925:= func< n,k | Round((Sqrt(k+1))^(n-1)*Evaluate(ChebyshevSecond(n), Sqrt(k+1)/2)) >;
    [A167925(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 11 2023
    
  • Mathematica
    (* First program *)
    m[k_]= {{k,1}, {-1,1}};
    v[0, k_]:= {0,1};
    v[n_, k_]:= v[n, k]= m[k].v[n-1,k];
    T[n_, k_]:= v[n, k][[1]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
    (* Second program *)
    A167925[n_, k_]:= (Sqrt[k+1])^(n-1)*ChebyshevU[n-1, Sqrt[k+1]/2];
    Table[A167925[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 11 2023 *)
  • SageMath
    def A167925(n,k): return (sqrt(k+1))^(n-1)*chebyshev_U(n-1, sqrt(k+1)/2)
    flatten([[A167925(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 11 2023

Formula

T(n, k) = (-1)^(n+1) * [x^(n-1)]( 1/(1 + (k+1)*x + (k+1)*x^2) ). - Francesco Daddi, Aug 04 2011 (modified by G. C. Greubel, Sep 11 2023)
From G. C. Greubel, Sep 11 2023: (Start)
T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2).
T(n, 0) = A128834(n).
T(n, 1) = A009545(n) = A099087(n-1).
T(n, 2) = A057083(n-1).
T(n, 3) = A001787(n).
T(n, 4) = A030191(n-1).
T(n, 5) = A030192(n-1).
T(n, 6) = A030240(n-1).
T(n, 7) = A057084(n-1).
T(n, 8) = A057085(n).
T(n, 9) = A057086(n-1).
T(n, 10) = A190871(n).
T(n, 11) = A190873(n). (End)

Extensions

Edited by G. C. Greubel, Sep 11 2023

A206306 Riordan array (1, x/(1-3*x+2*x^2)).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 06 2012

Keywords

Comments

The convolution triangle of the Mersenne numbers A000225. - Peter Luschny, Oct 09 2022

Examples

			Triangle begins:
  1;
  0,    1;
  0,    3,    1;
  0,    7,    6,     1;
  0,   15,   23,     9,     1;
  0,   31,   72,    48,    12,     1;
  0,   63,  201,   198,    82,    15,    1;
  0,  127,  522,   699,   420,   125,   18,    1;
  0,  255, 1291,  2223,  1795,   765,  177,   21,   1;
  0,  511, 3084,  6562,  6768,  3840, 1260,  238,  24,  1;
  0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // T = A206306
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return 0;
      else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
    
  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
  • SageMath
    def T(n,k): # T = A206306
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        elif (k==0): return 0
        else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022

Formula

Triangle T(n,k), read by rows, given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Diagonals sums are even-indexed Fibonacci numbers.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A204089(n), A204091(n) for x = 0, 1, 2 respectively.
G.f.: (1-3*x+2*x^)/(1-(3+y)*x+2*x^2).
From Philippe Deléham, Nov 17 2013; corrected Feb 13 2020: (Start)
T(n, n) = 1.
T(n+1, n) = 3n = A008585(n).
T(n+2, n) = A062725(n).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=T(2,0)=0, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. (End)
From G. C. Greubel, Dec 20 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n,k) = [n=1] - A009545(n).
Sum_{k=0..n} (-2)^k*T(n,k) = [n=1] + A078020(n+1).
T(2*n, n+1) = A045741(n+2), n >= 0.
T(2*n+1, n+1) = A244038(n). (End)

A217988 Binomial transform of A215495(n).

Original entry on oeis.org

1, 2, 4, 10, 26, 66, 160, 372, 840, 1864, 4096, 8944, 19424, 41952, 90112, 192576, 409728, 868480, 1835008, 3866368, 8125952, 17038848, 35651584, 74449920, 155191296, 322963456, 671088640, 1392504832, 2885672960, 5972680704, 12348030976, 25501384704
Offset: 0

Views

Author

Paul Curtz, Oct 17 2012

Keywords

Comments

Companion to A218009.
Like any other sequence with a linear recurrence with constant coefficients, this sequence is periodic if read modulo some constant m. These Pisano period lengths for m>=1 are 1, 1, 8, 1, 20, 8, 168, 1, 24, 20, 440, 8, 156, 168, 40, 1, 272, 24, 1368, 20, ... [Curtz's comment reformulated and extended by R. J. Mathar, Oct 23 2012]
Let b(n) = a(n+1)-2*a(n), then b(n+3)-2*b(n+2) = A009545(n+2). - edited by Michel Marcus, Apr 24 2018

Examples

			a(n) and successive differences:
1, 2,  4, 10, 26,  66, 160, 372,  840, 1864, 4096, ...
1, 2,  6, 16, 40,  94, 212, 468, 1024, ...
1, 4, 10, 24, 54, 118, 256, ...
3, 6, 14, 30, 64, ...
3, 8, 16, ...
5, 8, ...
3, ...
		

Crossrefs

Programs

  • Magma
    I:=[1, 2, 4, 10, 26, 66]; [n le 6 select I[n] else 6*Self(n-1) - 14*Self(n-2) + 16*Self(n-3) - 8*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 15 2012
    
  • Mathematica
    a[n_] := Sum[ Binomial[n, k]*If[ OddQ[k], k, k/2 + Boole[ Mod[k, 4] == 0]], {k, 0, n}]; Table[ a[n], {n, 0, 31}] (* Jean-François Alcover, Oct 17 2012 *)
    CoefficientList[Series[(1-4*x+6*x^2-2*x^3-2*x^4+2*x^5)/((1-2*x)^2 * (1 - 2*x + 2*x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)
    LinearRecurrence[{6,-14,16,-8},{1,2,4,10,26,66},40] (* Harvey P. Dale, Aug 14 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-4*x+6*x^2-2*x^3-2*x^4+2*x^5)/((1-2*x)^2*(1-2*x+2*x^2))) \\ G. C. Greubel, Apr 23 2018

Formula

a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 8*a(n-4) with n > 5.
a(n) = A218009(n) + A146559(n).
G.f.: (1-4*x+6*x^2-2*x^3-2*x^4+2*x^5)/((1-2*x)^2*(1-2*x+2*x^2)). - Bruno Berselli, Oct 22 2012
a(n) = 2^(n-3)*(3*n+2)+((1+i)^n+(1-i)^n)/4, where i=sqrt(-1) and n>1, with a(0)=1, a(1)=2.

A218009 Binomial transform of A212831(n).

Original entry on oeis.org

0, 1, 4, 12, 30, 70, 160, 364, 824, 1848, 4096, 8976, 19488, 42016, 90112, 192448, 409472, 868224, 1835008, 3866880, 8126976, 17039872, 35651584, 74447872, 155187200, 322959360, 671088640, 1392513024, 2885689344, 5972697088, 12348030976, 25501351936, 52613316608
Offset: 0

Views

Author

Paul Curtz, Oct 18 2012

Keywords

Comments

Companion to A217988.
Considering a(n+1) - 2*a(n) = 1,2,4,6,10,20,44,96,200,... = b(n), is
b(n+3) - 2*b(n+2) = -2,-2,0,4,8,8,0,-16,-32,-32,0,... = -A009545(n+2).

Crossrefs

Programs

  • Magma
    I:=[0, 1, 4, 12, 30, 70]; [n le 6 select I[n] else 6*Self(n-1) - 14*Self(n-2) + 16*Self(n-3) - 8*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 15 2012
  • Mathematica
    a[n_] := Sum[(1/4)*Binomial[n, k]*((-(1 + (-1)^k))*(-1 + (-1)^Floor[k/2]) - (-3 + (-1)^k)*k), {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 18 2012 *)
    CoefficientList[Series[x*(1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4)/((1 - 2*x)^2*(1 - 2*x + 2*x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)

Formula

G.f.: x*(1-2*x+2*x^2-2*x^3+2*x^4)/((1-2*x)^2*(1-2*x+2*x^2)). - Bruno Berselli, Oct 18 2012
a(n) = 2^(n-3)*(3*n+2)+(1+i)^(n-4)+(1-i)^(n-4), where i=sqrt(-1) and n>1, with a(0)=0, a(1)=1. - Bruno Berselli, Oct 18 2012
a(n) = 6*a(n-1) -14*a(n-2) +16*a(n-3) -8*a(n-4).

A291483 Expansion of e.g.f. arcsinh(x)*exp(x).

Original entry on oeis.org

0, 1, 2, 2, 0, 4, 40, -64, -1344, 3984, 85408, -356896, -8462080, 45908160, 1209040768, -8080805888, -235449260032, 1871655631104, 59955521585664, -552758145525248, -19339870285225984, 202927333558572032, 7707208199780517888, -90698934927786770432, -3718489569130941169664, 48507735629457304555520
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2017

Keywords

Examples

			E.g.f.: A(x) = x/1! + 2*x^2/2! + 2*x^3/3! + 4*x^5/5! + 40*x^6/6! - 64*x^7/7! - 1344*x^8/8! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsinh(x)*exp(x),x=0,26): seq(n!*coeff(a,x,n),n=0..25); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 25; Range[0, nmax]! CoefficientList[Series[ArcSinh[x] Exp[x], {x, 0, nmax}], x]
    nmax = 25; Range[0, nmax]! CoefficientList[Series[Log[x + Sqrt[1 + x^2]] Exp[x], {x, 0, nmax}], x]
    nmax = 25; Range[0, nmax]! CoefficientList[Series[-Sum[((-1)^k (-1 + x + Sqrt[1 + x^2])^k)/k, {k, 1, Infinity}] Exp[x], {x, 0, nmax}], x]

Formula

E.g.f.: log(x + sqrt(1 + x^2))*exp(x).

A348761 For any nonnegative number n with binary expansion Sum_{k >= 0} b_k * 2^k, a(n) is the imaginary part of f(n) = Sum_{k >= 0} ((-1)^Sum_{j = 0..k-1} b_j) * (1+i)^k (where i denotes the imaginary unit); sequence A348760 gives the real part.

Original entry on oeis.org

0, 0, 1, -1, 2, -2, -1, 1, 2, -2, -1, 1, 0, 0, 1, -1, 0, 0, 1, -1, 2, -2, -1, 1, 2, -2, -1, 1, 0, 0, 1, -1, -4, 4, 5, -5, 6, -6, -5, 5, 6, -6, -5, 5, -4, 4, 5, -5, 4, -4, -3, 3, -2, 2, 3, -3, -2, 2, 3, -3, 4, -4, -3, 3, -8, 8, 9, -9, 10, -10, -9, 9, 10, -10
Offset: 0

Views

Author

Rémy Sigrist, Oct 31 2021

Keywords

Comments

The function f defines a bijection from the nonnegative integers to the Gaussian integers.

Crossrefs

See A348691 for a similar sequence.

Programs

  • PARI
    a(n) = { my (v=0, k, o=-1); while (n, n-=2^k=valuation(n,2); v+=(1+I)^k * (-1)^o++); imag(v) }

Formula

a(2^k) = A009545(k) for any k >= 0.

A373358 a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) +2*a(n-4) for a(0) = a(1) = 0, a(2) = 1, a(3) = 4 for n >= 4.

Original entry on oeis.org

0, 0, 1, 4, 11, 26, 59, 136, 323, 782, 1903, 4620, 11175, 26970, 65051, 156944, 378811, 914566, 2208199, 5331476, 12871663, 31074802, 75020243, 181113240, 437244675, 1055602590, 2548453951, 6152518684, 14853499511, 35859517706, 86572518539, 209004522016, 504581529803, 1218167581622
Offset: 0

Views

Author

Paul Curtz, Jun 02 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -5, 2, 2}, {0, 0, 1, 4}, 50] (* Paolo Xausa, Jun 19 2024 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,4d-5c+2b+2a}; NestList[nxt,{0,0,1,4},40][[;;,1]] (* Harvey P. Dale, Jan 11 2025 *)
  • PARI
    a(n) = ((([2, 1; 1, 0]^(n+1))[2, 1]) - (1+I)^(n-1) - (1-I)^(n-1))/3 \\ Thomas Scheuerle, Jun 03 2024

Formula

G.f.: x^2 / ( (1 - 2*x - x^2) * (1 - 2*x + 2*x^2) ).
E.g.f.: exp(x)*(2*cosh(sqrt(2)*x) - 2*(cos(x)+sin(x)) + sqrt(2)*sinh(sqrt(2)*x))/6.
a(n) = A373245(n+1) - A114203(n+1).
a(0) = 0, a(n) = A373245(n-1) + A146559(n-1).
Binomial transform of 0, 0, followed by A077893 = abs(A077953) = abs(A077980).
a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) +2*a(n-4) for n >= 4.
From Thomas Scheuerle, Jun 03 2024: (Start)
a(n) = (A000129(n+1) - A009545(n+1))/3.
a(n) = (-i*sqrt(2)*(1-i)^(n+1) + i*sqrt(2)*(1+i)^(n+1) - (1-sqrt(2))^(n+1) + (1+sqrt(2))^(n+1))/(6*sqrt(2)).
a(n) = 2^n*(hypergeom([1/2 - n/2, -n/2], [-n], -1) - hypergeom([1/2 - n/2, -n/2], [-n], 2))/3. (End)
Previous Showing 31-40 of 53 results. Next